A Three-Dimensional Finite Element Analysis Model of SAW Torque Sensor with Multilayer Structure

被引:7
|
作者
Li, Zhipeng [1 ]
Meng, Xu [1 ]
Wang, Bonan [1 ]
Zhang, Chao [1 ]
机构
[1] Northeast Forestry Univ, Sch Transportat, Harbin 150040, Peoples R China
基金
中国国家自然科学基金;
关键词
surface acoustic wave; multi-layer structure; high frequency; finite element analysis; torque sensor; DIAMOND;
D O I
10.3390/s22072600
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A three-dimensional finite element analysis model of surface acoustic wave (SAW) torque sensor based on multilayer structure is proposed in this paper. Compared with the traditional saw torque sensor with quartz as piezoelectric substrate, the SAW torque sensor with multilayer structure has the advantages of fast propagation speed and high characteristic frequency. It is a very promising torque sensor, but there is very little related research. In order to successfully develop the sensor, it is essential to understand the propagation characteristics and torque sensing mode of SAW in multilayer structure. Therefore, in this study, we first established a multi-layered finite element analysis model of SAW device based on IDT/128 degrees Y-X lithium niobate/diamond/Si (100). Then, the effects of different film thicknesses on the characteristic frequency, electromechanical coupling coefficient, s parameter, and mechanical quality factor of SAW device without changing the wavelength are analyzed. Then, based on the finite element analysis, a three-dimensional research model of a new SAW torque sensor suitable for small diameter torsion bar (d = 10 mm) is established, and the relationship between saw device deformation and torque under the condition of small torque (+/- 40 Nm) is tested. The shape variable is introduced into the finite element analysis model of multi-layer SAW device. Finally, the relationship between saw torque sensor with multi-layer structure and torque is established by using the deformation relationship, which shows the perfect curve of sensor performance.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Three-dimensional finite-element analysis of maxillary
    Yu, Hyung S.
    Baik, Hyoung S.
    Sung, Sang J.
    Kim, Kee D.
    Cho, Young S.
    EUROPEAN JOURNAL OF ORTHODONTICS, 2007, 29 (02) : 118 - 125
  • [32] Three-dimensional finite element analysis of ankle arthrodesis
    Xie, Qiang
    Liu, Wenyi
    Wang, Zhihui
    Gao, Yunfeng
    Xue, Xinxin
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2017, 10 (08): : 11749 - 11758
  • [33] Three-dimensional finite element analysis for piezoelectric transformer
    Joo, HW
    Lee, CH
    Jung, HK
    APPLIED ELECTROMAGNETICS (III), 2001, 10 : 115 - 118
  • [34] Three-dimensional finite element analysis of deep excavations
    Ou, CY
    Chiou, DC
    Wu, TS
    JOURNAL OF GEOTECHNICAL ENGINEERING-ASCE, 1996, 122 (05): : 337 - 345
  • [35] Three-dimensional finite element analysis of the human ACL
    Haghpanahi, M.
    Jalayer, F.
    PROCEEDINGS OF THE 1ST WSEAS INTERNATIONAL CONFERENCE ON BIOMEDICAL ELECTRONICS AND BIOMEDICAL INFORMATICS, 2008, : 134 - +
  • [36] Three-dimensional finite element analysis of lined tunnels
    Augarde, CE
    Burd, HJ
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2001, 25 (03) : 243 - 262
  • [37] Three-dimensional finite element analysis of subdural hematoma
    Huang, HM
    Lee, MC
    Chiu, WT
    Chen, CT
    Lee, SY
    JOURNAL OF TRAUMA-INJURY INFECTION AND CRITICAL CARE, 1999, 47 (03): : 538 - 544
  • [38] Finite element analysis of three-dimensional RTM process
    Deb, MK
    Reddy, MP
    Mayavaram, RS
    Baumann, CE
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 1999, 18 (11) : 968 - 978
  • [39] A parallel environment for three-dimensional finite element analysis
    Moretti, CO
    Neto, JBC
    Bittencourt, TN
    Martha, LF
    DEVELOPMENTS IN ENGINEERING COMPUTATIONAL TECHNOLOGY, 2000, : 283 - 287
  • [40] A three-dimensional finite element analysis of the sports mouthguard
    Gialain, Ivan Onone
    Coto, Neide Pena
    Driemeier, Larissa
    Noritomi, Pedro Yoshito
    Brito e Dias, Reinaldo
    DENTAL TRAUMATOLOGY, 2016, 32 (05) : 409 - 415