Wilson lines in transverse-momentum dependent parton distribution functions with spin degrees of freedom

被引:23
|
作者
Cherednikov, I. O. [2 ,3 ,4 ,6 ]
Karanikas, A. I. [5 ]
Stefanis, N. G. [1 ,3 ]
机构
[1] Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany
[2] Univ Calabria, INFN Cosenza, I-87036 Arcavacata Di Rende, CS, Italy
[3] Joint Inst Nucl Res Dubna, Bogoliubov Lab Theoret Phys, RU-141980 Dubna, Russia
[4] Moscow MV Lomonosov State Univ, ITPM, RU-119899 Moscow, Russia
[5] Univ Athens, Nucl & Particle Phys Sect, Dept Phys, GR-15771 Athens, Greece
[6] Bochum Univ, Bochum, Germany
关键词
INELASTIC EP SCATTERING; LIGHT-CONE GAUGE; SINGLE SPIN; RENORMALIZATION; ANNIHILATION; AZIMUTHAL; MODEL;
D O I
10.1016/j.nuclphysb.2010.07.013
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We propose a new framework for transverse-momentum dependent parton distribution functions, based on a generalized conception of gauge invariance which includes into the Wilson lines the Pauli term similar to F-mu nu[gamma(mu), gamma(nu)]. We discuss the relevance of this nonminimal term for unintegrated parton distribution functions, pertaining to spinning particles, and analyze its influence on their renormalization-group properties. It is shown that while the Pauli term preserves the probabilistic interpretation of twist-two distributions-unpolarized and polarized-it gives rise to additional pole contributions to those of twist-three. The anomalous dimension induced this way is a matrix, calling for a careful analysis of evolution effects. Moreover, it turns out that the crosstalk between the Pauli term and the longitudinal and the transverse parts of the gauge fields, accompanying the fermions, induces a constant, but process-dependent, phase which is the same for leading and subleading distribution functions. We include Feynman rules for the calculation with gauge links containing the Pauli term and comment on the phenomenological implications of our approach. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:379 / 404
页数:26
相关论文
共 50 条
  • [41] Unpolarized transverse momentum dependent parton distribution functions beyond leading twist in quark models
    C. Lorcé
    B. Pasquini
    P. Schweitzer
    [J]. Journal of High Energy Physics, 2015
  • [42] Unpolarized transverse momentum dependent parton distribution functions beyond leading twist in quark models
    Lorce, C.
    Pasquini, B.
    Schweitzer, P.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (01):
  • [43] Transverse momentum dependent distribution functions in a covariant parton model approach with quark orbital motion
    Efremov, A. V.
    Schweitzer, P.
    Teryaev, O. V.
    Zavada, P.
    [J]. PHYSICAL REVIEW D, 2009, 80 (01):
  • [44] THE SPIN DEPENDENT PARTON DISTRIBUTION FUNCTIONS AND THEIR MOMENTS
    Monfared, S. Taheri
    Khorramian, Ali N.
    Arbabifar, F.
    Tehrani, S. Atashbar
    [J]. ACTA PHYSICA POLONICA B, 2010, 41 (12): : 2921 - 2927
  • [45] NUCLEAR EFFECTS AT LARGE TRANSVERSE-MOMENTUM IN A QCD PARTON MODEL
    LEV, M
    PETERSSON, B
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1983, 21 (1-2): : 155 - 161
  • [46] Transverse-momentum dependent factorization for γ*π0→γ
    Ma, J. P.
    Wang, Q.
    [J]. PHYSICAL REVIEW D, 2007, 75 (01):
  • [47] MEASUREMENT OF PARTON TRANSVERSE-MOMENTUM IN DI-JET EVENTS
    CORCORAN, MD
    ERWIN, ER
    HARVEY, EH
    THOMPSON, M
    CORMELL, L
    DRIS, M
    KONONENKO, W
    ROBINSON, B
    SELOVE, W
    YOST, B
    GOLLON, PJ
    KANOFSKY, A
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (04): : 636 - 636
  • [48] TRANSVERSE-MOMENTUM DISTRIBUTION OF INCLUSIVE PIONS
    PINSKY, SS
    STEVENS, PR
    [J]. PHYSICAL REVIEW D, 1974, 9 (03): : 833 - 835
  • [49] Role of transverse momentum dependence of unpolarized parton distribution and fragmentation functions in the analysis of azimuthal spin asymmetries
    Anselmino, M.
    Boglione, M.
    D'Alesio, U.
    Murgia, F.
    Prokudin, A.
    [J]. PHYSICAL REVIEW D, 2018, 98 (09)
  • [50] Transverse momentum dependent parton quasidistributions
    Ji, Xiangdong
    Jin, Lu-Chang
    Yuan, Feng
    Zhang, Jian-Hui
    Zhao, Yong
    [J]. PHYSICAL REVIEW D, 2019, 99 (11)