Wilson lines in transverse-momentum dependent parton distribution functions with spin degrees of freedom

被引:23
|
作者
Cherednikov, I. O. [2 ,3 ,4 ,6 ]
Karanikas, A. I. [5 ]
Stefanis, N. G. [1 ,3 ]
机构
[1] Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany
[2] Univ Calabria, INFN Cosenza, I-87036 Arcavacata Di Rende, CS, Italy
[3] Joint Inst Nucl Res Dubna, Bogoliubov Lab Theoret Phys, RU-141980 Dubna, Russia
[4] Moscow MV Lomonosov State Univ, ITPM, RU-119899 Moscow, Russia
[5] Univ Athens, Nucl & Particle Phys Sect, Dept Phys, GR-15771 Athens, Greece
[6] Bochum Univ, Bochum, Germany
关键词
INELASTIC EP SCATTERING; LIGHT-CONE GAUGE; SINGLE SPIN; RENORMALIZATION; ANNIHILATION; AZIMUTHAL; MODEL;
D O I
10.1016/j.nuclphysb.2010.07.013
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We propose a new framework for transverse-momentum dependent parton distribution functions, based on a generalized conception of gauge invariance which includes into the Wilson lines the Pauli term similar to F-mu nu[gamma(mu), gamma(nu)]. We discuss the relevance of this nonminimal term for unintegrated parton distribution functions, pertaining to spinning particles, and analyze its influence on their renormalization-group properties. It is shown that while the Pauli term preserves the probabilistic interpretation of twist-two distributions-unpolarized and polarized-it gives rise to additional pole contributions to those of twist-three. The anomalous dimension induced this way is a matrix, calling for a careful analysis of evolution effects. Moreover, it turns out that the crosstalk between the Pauli term and the longitudinal and the transverse parts of the gauge fields, accompanying the fermions, induces a constant, but process-dependent, phase which is the same for leading and subleading distribution functions. We include Feynman rules for the calculation with gauge links containing the Pauli term and comment on the phenomenological implications of our approach. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:379 / 404
页数:26
相关论文
共 50 条
  • [1] Wilson lines and transverse-momentum dependent parton distribution functions: A renormalization-group analysis
    Cherednikov, I. O.
    Stefanis, N. G.
    [J]. NUCLEAR PHYSICS B, 2008, 802 (1-2) : 146 - 179
  • [2] Renormalization, Wilson lines, and transverse-momentum-dependent parton-distribution functions
    Cherednikov, I. O.
    Stefanis, N. G.
    [J]. PHYSICAL REVIEW D, 2008, 77 (09):
  • [3] RENORMALIZATION-GROUP ANATOMY OF TRANSVERSE-MOMENTUM DEPENDENT PARTON DISTRIBUTION FUNCTIONS IN QCD
    Stefanis, N. G.
    Cherednikov, I. O.
    [J]. MODERN PHYSICS LETTERS A, 2009, 24 (35-37) : 2913 - 2923
  • [4] PARTON MODEL WITH TRANSVERSE-MOMENTUM
    CAPRASSE, H
    [J]. PHYSICAL REVIEW D, 1981, 24 (01): : 185 - 196
  • [5] INCLUSION OF PARTON TRANSVERSE-MOMENTUM EFFECTS IN THE PROTON STRUCTURE FUNCTIONS
    CHEN, JW
    HWANG, WYP
    [J]. CHINESE JOURNAL OF PHYSICS, 1994, 32 (01) : 51 - 63
  • [6] Relation between transverse momentum dependent distribution functions and parton distribution functions in the covariant parton model approach
    Efremov, A. V.
    Schweitzer, P.
    Teryaev, O. V.
    Zavada, P.
    [J]. PHYSICAL REVIEW D, 2011, 83 (05):
  • [7] THE MAGNITUDE OF THE PARTON INTRINSIC TRANSVERSE-MOMENTUM
    METCALF, WJ
    AITCHISON, IJR
    LEBRITTON, J
    MCCAL, D
    MELISSINOS, AC
    CONTOGOURIS, AP
    PAPADOPOULOS, S
    ALSPECTOR, J
    BORENSTEIN, S
    KALBFLEISCH, GR
    STRAND, RC
    ABASHIAN, A
    [J]. PHYSICS LETTERS B, 1980, 91 (02) : 275 - 280
  • [8] Transverse momentum dependent parton distribution and fragmentation functions with QCD evolution
    Aybat, S. Mert
    Rogers, Ted C.
    [J]. PHYSICAL REVIEW D, 2011, 83 (11):
  • [9] Equality of two definitions for transverse momentum dependent parton distribution functions
    Collins, John
    Rogers, Ted
    [J]. PHYSICAL REVIEW D, 2013, 87 (03):
  • [10] TRANSVERSE MOMENTUM DEPENDENT (TMD) PARTON DISTRIBUTION FUNCTIONS: STATUS AND PROSPECTS
    Angeles-Martinez, R.
    Bacchetta, A.
    Balitsky, I. I.
    Boer, D.
    Boglione, M.
    Boussarie, R.
    Ceccopieri, F. A.
    Cherednikov, I. O.
    Connor, P.
    Echevarria, M. G.
    Ferrera, G.
    Luyando, J. Grados
    Hautmann, F.
    Jung, H.
    Kasemets, T.
    Kutak, K.
    Lansberg, J. P.
    Lelek, A.
    Lykasov, G.
    Martinez, J. D. Madrigal
    Mulders, P. J.
    Nocera, E. R.
    Petreska, E.
    Pisano, C.
    Placakyte, R.
    Radescu, V.
    Radici, M.
    Schnell, G.
    Scimemi, I.
    Signori, A.
    Szymanowski, L.
    Monfared, S. Taheri
    Van der Veken, F. F.
    van Haevermaet, H. J.
    Van Mechelen, P.
    Vladimirov, A. A.
    Wallon, S.
    [J]. ACTA PHYSICA POLONICA B, 2015, 46 (12): : 2501 - 2534