Spectral non-self-adjoint analysis of complex Dirac, Pauli and Schrodinger operators with constant magnetic fields of full rank

被引:1
|
作者
Sambou, Diomba [1 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Vicuna Mackenna 4860, Santiago, Chile
关键词
Quantum magnetic Hamiltonians of full rank; non-self-adjoint (matrix-valued) perturbations; complex eigenvalues; Lieb-Thirring inequalities; EIGENVALUE ASYMPTOTICS;
D O I
10.3233/ASY-181491
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Dirac, Pauli and Schrodinger quantum Hamiltonians with constant magnetic fields of full rank in L-2(R-2d), d >= 1, perturbed by non-self-adjoint (matrix-valued) potentials. On the one hand, we show the existence of non-self-adjoint perturbations, generating near each point of the essential spectrum of the operators, infinitely many (complex) eigenvalues. On the other hand, we give asymptotic behaviours of the number of the (complex) eigenvalues. In particular, for compactly supported potentials, our results establish non-self-adjoint extensions of Raikov-Warzel [Rev. in Math. Physics 14 (2002), 1051-1072] and Melgaard-Rozenblum [Commun. PDE. 28 (2003), 697-736] results. So, we show how the (complex) eigenvalues converge to the points of the essential spectrum asymptotically, i.e., up to a multiplicative explicit constant, as 1/d! (vertical bar 1nr vertical bar/1n vertical bar 1nr vertical bar)(d), r SE arrow 0, in small annulus of radius r > 0 around the points of the essential spectrum.
引用
收藏
页码:113 / 136
页数:24
相关论文
共 50 条
  • [1] Spectral Enclosures for Non-self-adjoint Discrete Schrodinger Operators
    Ibrogimov, Orif O.
    Stampach, Frantisek
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2019, 91 (06)
  • [2] Non-self-adjoint periodic dirac operators
    Tkachenko, V
    OPERATOR THEORY, SYSTEM THEORY AND RELATED TOPICS: THE MOSHE LIVSIC ANNIVERSARY VOLUME, 2001, 123 : 485 - 512
  • [3] Eigenvalue asymptotics for weakly perturbed Dirac and Schrodinger operators with constant magnetic fields of full rank
    Melgaard, M
    Rozenblum, G
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (3-4) : 697 - 736
  • [4] Pseudomodes for non-self-adjoint Dirac operators
    Krejcirik, David
    Duc, Tho Nguyen
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (12)
  • [5] ON THE ACCELERANTS OF NON-SELF-ADJOINT DIRAC OPERATORS
    Mykytyuk, Ya. V.
    Puyda, D. V.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2014, 20 (04): : 349 - 364
  • [6] The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials
    Baskakov, A. G.
    Derbushev, A. V.
    Shcherbakov, A. O.
    IZVESTIYA MATHEMATICS, 2011, 75 (03) : 445 - 469
  • [7] Spectral monodromy of non-self-adjoint operators
    Quang Sang Phan
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (01)
  • [8] Spectral problems of a class of non-self-adjoint one-dimensional Schrodinger operators
    Veliev, O. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (02) : 1390 - 1401
  • [9] Spectral analysis for discontinuous non-self-adjoint singular Dirac operators with eigenparameter dependent boundary condition
    Li, Kun
    Sun, Jiong
    Hao, Xiaoling
    Bao, Qinglan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (01) : 304 - 316
  • [10] Location of Eigenvalues of Non-self-adjoint Discrete Dirac Operators
    Cassano, B.
    Ibrogimov, O. O.
    Krejcirik, D.
    Stampach, F.
    ANNALES HENRI POINCARE, 2020, 21 (07): : 2193 - 2217