Monte Carlo video text segmentation

被引:0
|
作者
Chen, DT
Odobez, JM
Thiran, JP
机构
[1] Dalle Molle Inst Perceptual Artificial Intelligen, IDIAP, CH-1920 Martigny, Switzerland
[2] Swiss Fed Inst Technol, EPFL, Signal Proc Inst, ITS, CH-1015 Lausanne, Switzerland
关键词
particle filter; Bayesian filter; image segmentation; video OCR;
D O I
10.1142/S0218001405004216
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a probabilistic algorithm for segmenting and recognizing text embedded in video sequences based on adaptive thresholding using a Bayes filtering method. The algorithm approximates the posterior distribution of segmentation thresholds of video text by a set of weighted samples. The set of samples is initialized by applying a classical segmentation algorithm on the first video frame and further refined by random sampling under a temporal Bayesian framework. This framework allows us to evaluate a text image segmentor on the basis of recognition result instead of visual segmentation result, which is directly relevant to our character recognition task. Results on a database of 6944 images demonstrate the validity of the algorithm.
引用
收藏
页码:647 / 661
页数:15
相关论文
共 50 条
  • [31] Topic Segmentation of Educational Video Lectures Using Audio and Text
    Dimitsas, Markos
    Leidner, Jochen L.
    ARTIFICIAL INTELLIGENCE-ECAI 2023 INTERNATIONAL WORKSHOPS, PT 2, XAI3, TACTIFUL, XI-ML, SEDAMI, RAAIT, AI4S, HYDRA, AI4AI, 2023, 2024, 1948 : 447 - 458
  • [32] A Text Segmentation Based Approach to Video Shot Boundary Detection
    Le, Duy-Dinh
    Satoh, Shin'ichi
    Thanh Duc Ngo
    Duc Anh Duong
    2008 IEEE 10TH WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, VOLS 1 AND 2, 2008, : 706 - +
  • [33] A method based on the Markov Chain Monte Carlo for fingerprint image segmentation
    Zhan, XS
    Sun, ZX
    Yin, YL
    Chen, Y
    FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PT 2, PROCEEDINGS, 2005, 3614 : 240 - 248
  • [34] Improving Tissue Segmentation for Monte Carlo Dose Calculation using DECT
    Di Salvio, A.
    Bedwani, S.
    Bouchard, H.
    Carrier, J-F
    MEDICAL PHYSICS, 2014, 41 (08) : 9 - 9
  • [35] Image segmentation by data-driven Markov Chain Monte Carlo
    Tu, ZW
    Zhu, SC
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (05) : 657 - 673
  • [36] Improved Segmentation of Cardiac Image Using Triangle and Partial Monte Carlo
    Sigit, Riyanto
    Barakbah, Ali Ridho
    Sulistijono, Indra Adji
    2016 INTERNATIONAL CONFERENCE ON KNOWLEDGE CREATION AND INTELLIGENT COMPUTING (KCIC), 2016, : 47 - 52
  • [37] Road Region Segmentation Based on Sequential Monte-Carlo Estimation
    Prochazka, Zdenek
    2008 10TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION: ICARV 2008, VOLS 1-4, 2008, : 1305 - 1310
  • [38] Particle filters, a quasi-Monte-Carlo-solution for segmentation of coronaries
    Florin, C
    Paragios, N
    Williams, J
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2005, PT 1, 2005, 3749 : 246 - 253
  • [39] Sequential Monte Carlo tracking by fusing multiple cues in video sequences
    Brasnett, Paul
    Mihaylova, Lyudmila
    Bull, David
    Canagarajah, Nishan
    IMAGE AND VISION COMPUTING, 2007, 25 (08) : 1217 - 1227
  • [40] Enhancing the Monte Carlo Tree Search Algorithm for Video Game Testing
    Ariyurek, Sinan
    Betin-Can, Aysu
    Surer, Elif
    2020 IEEE CONFERENCE ON GAMES (IEEE COG 2020), 2020, : 25 - 32