A robust a posteriori estimator for the Residual-free Bubbles method applied to advection-diffusion problems

被引:1
|
作者
Sangalli, G [1 ]
机构
[1] Univ Pavia, Dipartimento Matemat F Casorati, I-27100 Pavia, Italy
关键词
D O I
10.1007/PL00005471
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop the a posteriori error analysis for the RFB method, applied to the linear advection-diffusion problem: the numerical error, measured in suitable norms, is estimated in terms of the numerical residual. The robustness is investiged, in the sense that we prove uniform equivalence between a norm of the numerical residual and a particular norm of the error.
引用
收藏
页码:379 / 399
页数:21
相关论文
共 50 条
  • [31] Capturing small scales in elliptic problems using a residual-free bubbles finite element method
    Sangalli, G
    MULTISCALE MODELING & SIMULATION, 2003, 1 (03): : 485 - 503
  • [32] Acceleration of a domain decomposition method for advection-diffusion problems
    Lube, G
    Knopp, T
    Rapin, G
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING, 2005, 40 : 267 - 274
  • [33] A parameter-free stabilized finite element method for scalar advection-diffusion problems
    Bochev, Pavel
    Peterson, Kara
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (08): : 1458 - 1477
  • [34] Applications of the pseudo residual-free bubbles to the stabilization of the convection-diffusion-reaction problems in 2D
    Sendur, A.
    Nesliturk, A.
    Kaya, A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 277 : 154 - 179
  • [35] A NEW PARTICLE SET OF CONTOURS METHOD FOR ADVECTION-DIFFUSION PROBLEMS APPLIED TO THE MODELLING OF WASTE DISPOSAL
    Beaugendre, Heloise
    Huberson, Serge
    Mortazavi, Iraj
    PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING, 2012, VOL 1, PTS A AND B, SYMPOSIA, 2012, : 281 - 289
  • [36] SPECTRAL APPROXIMATION TO ADVECTION-DIFFUSION PROBLEMS BY THE FICTITIOUS INTERFACE METHOD
    FRATI, A
    PASQUARELLI, F
    QUARTERONI, A
    JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 107 (02) : 201 - 212
  • [37] A BALANCING DOMAIN DECOMPOSITION METHOD BY CONSTRAINTS FOR ADVECTION-DIFFUSION PROBLEMS
    Tu, Xuemin
    Li, Jing
    COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2008, 3 (01) : 25 - 60
  • [38] A posteriori error estimator and h-adaptive finite element method for diffusion-advection-reaction problems
    Ostapov, O.
    Vovk, O.
    Shynkarenko, H.
    RECENT ADVANCES IN COMPUTATIONAL MECHANICS, 2014, : 329 - 337
  • [39] New complex variable meshless method for advection-diffusion problems
    Wang Jian-Fei
    Cheng Yu-Min
    CHINESE PHYSICS B, 2013, 22 (03)
  • [40] AN ASYMPTOTIC BEHAVIOR AND A POSTERIORI ERROR ESTIMATES FOR THE GENERALIZED SCHWARTZ METHOD OF ADVECTION-DIFFUSION EQUATION
    Salah BOULAARAS
    Mohammed Said TOUATI BRAHIM
    Smail BOUZENADA
    Abderrahmane ZARAI
    Acta Mathematica Scientia, 2018, (04) : 1227 - 1244