Adversarial Attacks Against Deep Learning-Based Network Intrusion Detection Systems and Defense Mechanisms

被引:46
|
作者
Zhang, Chaoyun [1 ,2 ]
Costa-Perez, Xavier [3 ,4 ,5 ]
Patras, Paul [1 ,6 ]
机构
[1] Univ Edinburgh, Sch Informat, Edinburgh EH8 9AB, Midlothian, Scotland
[2] Tencent Lightspeed & Quantum Studios, Shenzhen 518057, Peoples R China
[3] I2CAT Fdn, Barcelona 08034, Spain
[4] ICREA, Barcelona 08010, Spain
[5] NEC Labs Europe, D-69115 Heidelberg, Germany
[6] Net AI, Edinburgh EH3 8HA, Midlothian, Scotland
关键词
Feature extraction; Deep learning; Robustness; Perturbation methods; Network intrusion detection; Detectors; Training; Adversarial attacks; network intrusion detection systems; deep learning;
D O I
10.1109/TNET.2021.3137084
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Neural networks (NNs) are increasingly popular in developing NIDS, yet can prove vulnerable to adversarial examples. Through these, attackers that may be oblivious to the precise mechanics of the targeted NIDS add subtle perturbations to malicious traffic features, with the aim of evading detection and disrupting critical systems. Defending against such adversarial attacks is of high importance, but requires to address daunting challenges. Here, we introduce TIKI-TAKA, a general framework for (i) assessing the robustness of state-of-the-art deep learning-based NIDS against adversarial manipulations, and which (ii) incorporates defense mechanisms that we propose to increase resistance to attacks employing such evasion techniques. Specifically, we select five cutting-edge adversarial attack types to subvert three popular malicious traffic detectors that employ NNs. We experiment with publicly available datasets and consider both one-to-all and one-to-one classification scenarios, i.e., discriminating illicit vs benign traffic and respectively identifying specific types of anomalous traffic among many observed. The results obtained reveal that attackers can evade NIDS with up to 35.7% success rates, by only altering time-based features of the traffic generated. To counteract these weaknesses, we propose three defense mechanisms: model voting ensembling, ensembling adversarial training, and query detection. We demonstrate that these methods can restore intrusion detection rates to nearly 100% against most types of malicious traffic, and attacks with potentially catastrophic consequences (e.g., botnet) can be thwarted. This confirms the effectiveness of our solutions and makes the case for their adoption when designing robust and reliable deep anomaly detectors.
引用
收藏
页码:1294 / 1311
页数:18
相关论文
共 50 条
  • [21] Modeling Realistic Adversarial Attacks against Network Intrusion Detection Systems
    Apruzzese, Giovanni
    Andreolini, Mauro
    Ferretti, Luca
    Marchetti, Mirco
    Colajanni, Michele
    DIGITAL THREATS: RESEARCH AND PRACTICE, 2022, 3 (03):
  • [22] Defending network intrusion detection systems against adversarial evasion attacks
    Pawlicki, Marek
    Choras, Michal
    Kozik, Rafal
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 110 : 148 - 154
  • [23] Adversarial robustness of deep reinforcement learning-based intrusion detection
    Merzouk, Mohamed Amine
    Neal, Christopher
    Delas, Josephine
    Yaich, Reda
    Boulahia-Cuppens, Nora
    Cuppens, Frederic
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2024, : 3625 - 3651
  • [24] Analyzing Adversarial Attacks Against Deep Learning for Intrusion Detection in IoT Networks
    Ibitoye, Olakunle
    Shafiq, Omair
    Matrawy, Ashraf
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [25] Adversarial Robust and Explainable Network Intrusion Detection Systems Based on Deep Learning
    Sauka, Kudzai
    Shin, Gun-Yoo
    Kim, Dong-Wook
    Han, Myung-Mook
    APPLIED SCIENCES-BASEL, 2022, 12 (13):
  • [26] Two-phase Defense Against Poisoning Attacks on Federated Learning-based Intrusion Detection
    Lai, Yuan-Cheng
    Lin, Jheng-Yan
    Lin, Ying-Dar
    Hwang, Ren-Hung
    Lin, Po-Chin
    Wu, Hsiao-Kuang
    Chen, Chung-Kuan
    COMPUTERS & SECURITY, 2023, 129
  • [27] Deep Learning Defense Method Against Adversarial Attacks
    Wang, Ling
    Zhang, Cheng
    Liu, Jie
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3667 - 3671
  • [28] DReLAB - Deep REinforcement Learning Adversarial Botnet: A benchmark dataset for adversarial attacks against botnet Intrusion Detection Systems
    Venturi, Andrea
    Apruzzese, Giovanni
    Andreolini, Mauro
    Colajanni, Michele
    Marchetti, Mirco
    DATA IN BRIEF, 2021, 34
  • [29] Adversarial Attacks on Deep Learning-Based UAV Navigation Systems
    Mynuddin, Mohammed
    Khan, Sultan Uddin
    Mahmoud, Nabil Mahmoud
    Alsharif, Ahmad
    2023 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY, CNS, 2023,
  • [30] Generative Adversarial Attacks Against Intrusion Detection Systems Using Active Learning
    Shu, Dule
    Leslie, Nandi O.
    Kamhoua, Charles A.
    Tucker, Conrad S.
    PROCEEDINGS OF THE 2ND ACM WORKSHOP ON WIRELESS SECURITY AND MACHINE LEARNING, WISEML 2020, 2020, : 1 - 6