Optimal rearrangement problem and normalized obstacle problem in the fractional setting

被引:7
|
作者
Fernandez Bonder, Julian [1 ,2 ]
Cheng, Zhiwei [3 ]
Mikayelyan, Hayk [3 ]
机构
[1] Univ Buenos Aires, Dept Matemat FCEN, Ciudad Univ,Pabellon I C1428EGA Av Cantilo 2160, Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IMAS, Ciudad Univ,Pabellon I C1428EGA Av Cantilo 2160, Buenos Aires, DF, Argentina
[3] Univ Nottingham Ningbo, Math Sci, 199 Taikang East Rd, Ningbo 315100, Peoples R China
基金
美国国家科学基金会;
关键词
Fractional partial differential equations; Optimization problems; Obstacle problem; MAXIMIZATION; DYNAMICS; GUIDE;
D O I
10.1515/anona-2020-0067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an optimal rearrangement minimization problem involving the fractional Laplace operator (-Delta)(s), 0 < s < 1, and the Gagliardo seminorm vertical bar u vertical bar(s). We prove the existence of the unique minimizer, analyze its properties as well as derive the non-local and highly non-linear PDE it satisfies -(Delta)U-s - chi({U <= 0}) min {-(-Delta)(s) U+; 1} = chi({U>0}), which happens to be the fractional analogue of the normalized obstacle problem Delta u = chi({u>0}).
引用
收藏
页码:1592 / 1606
页数:15
相关论文
共 50 条
  • [21] OPTIMAL CONTROL FOR THE INFINITY OBSTACLE PROBLEM
    Mawi, Henok
    Ndiaye, Cheikh Birahim
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (10) : 4219 - 4231
  • [22] THE TWO-PHASE FRACTIONAL OBSTACLE PROBLEM
    Allen, Mark
    Lindgren, Erik
    Petrosyan, Arshak
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (03) : 1879 - 1905
  • [23] The obstacle problem for the fractional Laplacian with critical drift
    Xavier Fernández-Real
    Xavier Ros-Oton
    Mathematische Annalen, 2018, 371 : 1683 - 1735
  • [24] The obstacle problem for a higher order fractional Laplacian
    Danielli, Donatella
    Ali, Alaa Haj
    Petrosyan, Arshak
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (08)
  • [25] The obstacle problem for a higher order fractional Laplacian
    Donatella Danielli
    Alaa Haj Ali
    Arshak Petrosyan
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [26] The obstacle problem for the fractional Laplacian with critical drift
    Fernandez-Real, Xavier
    Ros-Oton, Xavier
    MATHEMATISCHE ANNALEN, 2018, 371 (3-4) : 1683 - 1735
  • [27] On the obstacle problem for fractional semilinear wave equations
    Bonafini, M.
    Le, V. P. C.
    Novaga, M.
    Orlandi, G.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 210
  • [28] Higher regularity for the fractional thin obstacle problem
    Koch, Herbert
    Rueland, Angkana
    Shi, Wenhui
    NEW YORK JOURNAL OF MATHEMATICS, 2019, 25 : 745 - 838
  • [29] On the obstacle problem in fractional generalised Orlicz spaces
    Lo, Catharine W. K.
    Rodrigues, Jose Francisco
    MATHEMATICS IN ENGINEERING, 2024, 6 (05): : 676 - 704
  • [30] Regularity of solutions to the parabolic fractional obstacle problem
    Caffarelli, Luis
    Figalli, Alessio
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 680 : 191 - 233