Optimal rearrangement problem and normalized obstacle problem in the fractional setting

被引:7
|
作者
Fernandez Bonder, Julian [1 ,2 ]
Cheng, Zhiwei [3 ]
Mikayelyan, Hayk [3 ]
机构
[1] Univ Buenos Aires, Dept Matemat FCEN, Ciudad Univ,Pabellon I C1428EGA Av Cantilo 2160, Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IMAS, Ciudad Univ,Pabellon I C1428EGA Av Cantilo 2160, Buenos Aires, DF, Argentina
[3] Univ Nottingham Ningbo, Math Sci, 199 Taikang East Rd, Ningbo 315100, Peoples R China
基金
美国国家科学基金会;
关键词
Fractional partial differential equations; Optimization problems; Obstacle problem; MAXIMIZATION; DYNAMICS; GUIDE;
D O I
10.1515/anona-2020-0067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an optimal rearrangement minimization problem involving the fractional Laplace operator (-Delta)(s), 0 < s < 1, and the Gagliardo seminorm vertical bar u vertical bar(s). We prove the existence of the unique minimizer, analyze its properties as well as derive the non-local and highly non-linear PDE it satisfies -(Delta)U-s - chi({U <= 0}) min {-(-Delta)(s) U+; 1} = chi({U>0}), which happens to be the fractional analogue of the normalized obstacle problem Delta u = chi({u>0}).
引用
收藏
页码:1592 / 1606
页数:15
相关论文
共 50 条
  • [1] Fractional optimal maximization problem and the unstable fractional obstacle problem
    Bonder, Julian Fernandez
    Cheng, Zhiwei
    Mikayelyan, Hayk
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 495 (01)
  • [2] CYLINDRICAL OPTIMAL REARRANGEMENT PROBLEM LEADING TO A NEW TYPE OBSTACLE PROBLEM
    Mikayelyan, Hayk
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2018, 24 (02) : 859 - 872
  • [3] Optimal regularity of solutions to the obstacle problem for the fractional Laplacian with drift
    Petrosyan, Arshak
    Pop, Camelia A.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (02) : 417 - 472
  • [4] The fractional unstable obstacle problem
    Allen, Mark
    Garcia, Mariana Smit Vega
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193
  • [5] A double obstacle problem in an optimal investment problem
    Kim, Takwon
    Lee, Ki-Ahm
    Park, Jinwan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 232
  • [6] Optimal obstacle control problem
    Li Zhu
    Xiu-hua Li
    Xing-ming Guo
    Applied Mathematics and Mechanics, 2008, 29 : 559 - 569
  • [7] Optimal obstacle control problem
    Zhu Li
    Li Xiu-hua
    Guo Xing-ming
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2008, 29 (05) : 559 - 569
  • [8] Optimal control of an obstacle problem
    Bergounioux, M
    APPLIED MATHEMATICS AND OPTIMIZATION, 1997, 36 (02): : 147 - 172
  • [9] Optimal obstacle control problem
    朱砾
    李秀华
    郭兴明
    Applied Mathematics and Mechanics(English Edition), 2008, (05) : 559 - 569
  • [10] Optimal control of an obstacle problem
    Universite d'Orleans, Orleans, France
    Appl Math Optim, 2 (147-172):