INTEGRATING ARTICULATORY FEATURES USING KULLBACK-LEIBLER DIVERGENCE BASED ACOUSTIC MODEL FOR PHONEME RECOGNITION

被引:0
|
作者
Rasipuram, Ramya [1 ]
Magimai-Doss, Mathew [1 ]
机构
[1] Idiap Res Inst, Martigny, Switzerland
关键词
automatic speech recognition; articulatory features; phonemes; multilayer perceptrons; Kullback-Leibler divergence based hidden Markov model; posterior probabilities;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we propose a novel framework to integrate articulatory features (AFs) into HMM- based ASR system. This is achieved by using posterior probabilities of different AFs (estimated by multilayer perceptrons) directly as observation features in Kullback-Leibler divergence based HMM (KL-HMM) system. On the TIMIT phoneme recognition task, the proposed framework yields a phoneme recognition accuracy of 72.4% which is comparable to KL-HMM system using posterior probabilities of phonemes as features (72.7%). Furthermore, a best performance of 73.5% phoneme recognition accuracy is achieved by jointly modeling AF probabilities and phoneme probabilities as features. This shows the efficacy and flexibility of the proposed approach.
引用
收藏
页码:5192 / 5195
页数:4
相关论文
共 50 条
  • [21] Detecting abnormal situations using the Kullback-Leibler divergence
    Zeng, Jiusun
    Kruger, Uwe
    Geluk, Jaap
    Wang, Xun
    Xie, Lei
    AUTOMATICA, 2014, 50 (11) : 2777 - 2786
  • [22] Quantile-based cumulative Kullback-Leibler divergence
    Sunoj, S. M.
    Sankaran, P. G.
    Nair, N. Unnikrishnan
    STATISTICS, 2018, 52 (01) : 1 - 17
  • [23] Fault tolerant learning using Kullback-Leibler divergence
    Sum, John
    Leung, Chi-sing
    Hsu, Lipin
    TENCON 2007 - 2007 IEEE REGION 10 CONFERENCE, VOLS 1-3, 2007, : 1193 - +
  • [24] Kullback-Leibler Divergence-Based Visual Servoing
    Li, Xiangfei
    Zhao, Huan
    Ding, Han
    2021 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2021, : 720 - 726
  • [25] Robust parameter design based on Kullback-Leibler divergence
    Zhou, XiaoJian
    Lin, Dennis K. J.
    Hu, Xuelong
    Jiang, Ting
    COMPUTERS & INDUSTRIAL ENGINEERING, 2019, 135 : 913 - 921
  • [26] Anomaly Detection Using the Kullback-Leibler Divergence Metric
    Afgani, Mostafa
    Sinanovic, Sinan
    Haas, Harald
    ISABEL: 2008 FIRST INTERNATIONAL SYMPOSIUM ON APPLIED SCIENCES IN BIOMEDICAL AND COMMMUNICATION TECHNOLOGIES, 2008, : 197 - 201
  • [27] Android Malware Detection Using Kullback-Leibler Divergence
    Cooper, Vanessa N.
    Haddad, Hisham M.
    Shahriar, Hossain
    ADCAIJ-ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 2014, 3 (02): : 17 - 24
  • [28] An Asymptotic Test for Bimodality Using The Kullback-Leibler Divergence
    Contreras-Reyes, Javier E.
    SYMMETRY-BASEL, 2020, 12 (06):
  • [29] Optimal robust estimates using the Kullback-Leibler divergence
    Yohai, Victor J.
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (13) : 1811 - 1816
  • [30] Estimating Kullback-Leibler Divergence Using Kernel Machines
    Ahuja, Kartik
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 690 - 696