Numerical study of the Kardar-Parisi-Zhang equation

被引:52
|
作者
Miranda, Vladimir G. [1 ]
Reis, Fabio D. A. Aarao [1 ]
机构
[1] Univ Fed Fluminense, Inst Fis, BR-24210340 Niteroi, RJ, Brazil
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 03期
关键词
D O I
10.1103/PhysRevE.77.031134
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We integrate numerically the Kardar- Parisi- Zhang ( KPZ ) equation in 1+ 1 and 2+ 1 dimensions using a Euler discretization scheme and the replacement of (del h)(2) by exponentially decreasing functions of that quantity to suppress instabilities. When applied to the equation in 1+ 1 dimensions, the method of instability control provides values of scaling amplitudes consistent with exactly known results, in contrast to the deviations generated by the original scheme. In 2+ 1 dimensions, we spanned a range of the model parameters where transients with Edwards- Wilkinson or random growth are not observed, in box sizes 8 <= L <= 128. We obtain a roughness exponent of 0.37 <= alpha <= 0.40 and steady state height distributions with skewness S= 0.25 +/- 0.01 and kurtosis Q= 0.15 +/- 0.1. These estimates are obtained after extrapolations to the large L limit, which is necessary due to significant finite- size effects in the estimates of effective exponents and height distributions. On the other hand, the steady state roughness distributions show weak scaling corrections and evidence of stretched exponential tails. These results confirm previous estimates from lattice models, showing their reliability as representatives of the KPZ class.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Nonlocal effects in the conserved Kardar-Parisi-Zhang equation
    Jung, Youngkyun
    Kim, In-Mook
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62 (2 B): : 2949 - 2951
  • [32] Lattice duality for the compact Kardar-Parisi-Zhang equation
    Sieberer, L. M.
    Wachtel, G.
    Altman, E.
    Diehl, S.
    PHYSICAL REVIEW B, 2016, 94 (10)
  • [33] The Kardar-Parisi-Zhang equation and its matrix generalization
    L. V. Bork
    S. L. Ogarkov
    Theoretical and Mathematical Physics, 2014, 178 : 359 - 373
  • [34] A discrete model of the quenched Kardar-Parisi-Zhang equation
    Song, Hyun Suk
    Kim, Jin Min
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2007, 51 (05) : 1630 - 1634
  • [35] Upper critical dimension of the Kardar-Parisi-Zhang equation
    Lassig, M
    Kinzelbach, H
    PHYSICAL REVIEW LETTERS, 1997, 78 (05) : 903 - 906
  • [36] Large Deviations of Surface Height in the Kardar-Parisi-Zhang Equation
    Meerson, Baruch
    Katzav, Eytan
    Vilenkin, Arkady
    PHYSICAL REVIEW LETTERS, 2016, 116 (07)
  • [37] Kardar-Parisi-Zhang equation in one dimension and line ensembles
    Spohn, H
    PRAMANA-JOURNAL OF PHYSICS, 2005, 64 (06): : 847 - 857
  • [38] Persistence of Kardar-Parisi-Zhang interfaces
    Kallabis, H
    Krug, J
    EUROPHYSICS LETTERS, 1999, 45 (01): : 20 - 25
  • [39] Facet formation in the negative quenched Kardar-Parisi-Zhang equation
    Center for Theoretical Physics, Department of Physics, Seoul National University, Seoul 151-742, Korea, Republic of
    不详
    Phys Rev E., 2 PART A (1570-1573):
  • [40] Effects of memory on scaling behaviour of Kardar-Parisi-Zhang equation
    Tang Gang
    Hao Da-Peng
    Xia Hui
    Han Kui
    Xun Zhi-Peng
    CHINESE PHYSICS B, 2010, 19 (10)