Absence of eigenvalues of two-dimensional magnetic Schrodinger operators

被引:22
|
作者
Fanelli, Luca [1 ]
Krejcirik, David [2 ]
Vega, Luis [3 ,4 ]
机构
[1] SAPIENZA Univ Roma, Dipartimento Matemat, Ple Aldo Moro 5, I-00185 Rome, Italy
[2] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, Prague 12000 2, Czech Republic
[3] Univ Basque Country, Dept Matemat, Aptdo 644, E-48080 Bilbao, Spain
[4] BCAM, Alameda Mazarredo 14, Bilbao 48009, Spain
关键词
Magnetic Schroedinger operators; Complex potential; Absence of eigenvalues; Multipliers method;
D O I
10.1016/j.jfa.2018.08.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By developing the method of multipliers, we establish sufficient conditions on the electric potential and magnetic field which guarantee that the corresponding two-dimensional Schrodinger operator possesses no point spectrum. The settings of complex-valued electric potentials and singular magnetic potentials of Aharonov-Bohm field are also covered. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:2453 / 2472
页数:20
相关论文
共 50 条
  • [41] ON THE ABSENCE OF POSITIVE EIGENVALUES FOR ONE-BODY SCHRODINGER-OPERATORS
    FROESE, R
    HERBST, I
    HOFFMANNOSTENHOF, M
    HOFFMANNOSTENHOF, T
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1982, 41 : 272 - 284
  • [42] FINITE-GAP TWO-DIMENSIONAL SCHRODINGER-OPERATORS - POTENTIAL-OPERATORS
    VESELOV, AP
    NOVIKOV, SP
    [J]. DOKLADY AKADEMII NAUK SSSR, 1984, 279 (04): : 784 - 788
  • [43] Spectra of discrete two-dimensional periodic Schrodinger operators with small potentials
    Embree, Mark
    Fillman, Jake
    [J]. JOURNAL OF SPECTRAL THEORY, 2019, 9 (03) : 1063 - 1087
  • [44] FADDEEV EIGENFUNCTIONS FOR TWO-DIMENSIONAL SCHRODINGER OPERATORS VIA THE MOUTARD TRANSFORMATION
    Taimanov, I. A.
    Tsarev, S. P.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 176 (03) : 1176 - 1183
  • [45] Spectral estimates for two-dimensional schrodinger operators with application to quantum layers
    Kovarik, Hynek
    Vugalter, Semjon
    Weidl, Timo
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 275 (03) : 827 - 838
  • [46] Two-dimensional finite-gap Schrodinger operators with elliptic coefficients
    Saparbayeva, B. T.
    [J]. MATHEMATICAL NOTES, 2014, 95 (5-6) : 747 - 749
  • [47] Comparison theorems for eigenvalues of one-dimensional Schrodinger operators
    Huang, MJ
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2003, 43 (03): : 465 - 474
  • [48] Discrete and embedded eigenvalues for one-dimensional Schrodinger operators
    Remling, Christian
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (01) : 275 - 287
  • [49] Absence of positive eigenvalues of magnetic Schrödinger operators
    Silvana Avramska-Lukarska
    Dirk Hundertmark
    Hynek Kovařík
    [J]. Calculus of Variations and Partial Differential Equations, 2023, 62
  • [50] Approximation of eigenvalues of Schrodinger operators
    Brasche, J. F.
    Fulsche, R.
    [J]. NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2018, 9 (02): : 145 - 161