Numerical simulations of magnetic resonance elastography using finite element analysis with a linear heterogeneous viscoelastic model

被引:4
|
作者
Tomita, Sunao [1 ]
Suzuki, Hayato [1 ]
Kajiwara, Itsuro [1 ]
Nakamura, Gen [2 ]
Jiang, Yu [3 ]
Suga, Mikio [4 ]
Obata, Takayuki [5 ]
Tadano, Shigeru [1 ]
机构
[1] Hokkaido Univ, Grad Sch Engn, Div Human Mech Syst & Design, Kita Ku, Kita 13,Nishi 8, Sapporo, Hokkaido 0608628, Japan
[2] Hokkaido Univ, Dept Math, Fac Sci, Kita Ku, Kita 10,Nishi 8, Sapporo, Hokkaido 0600810, Japan
[3] Shanghai Univ Finance & Econ, Dept Appl Math, 777 GuoDing Rd, Shanghai 200433, Peoples R China
[4] Chiba Univ, Ctr Frontier Med Engn, Inage Ku, 1-33 Yayoicho, Chiba, Chiba 2638522, Japan
[5] Natl Inst Radiol Sci, Inage Ku, 4-9-1 Anagawa, Chiba, Chiba 2638555, Japan
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
Magnetic resonance elastography; Elastogram; Viscoelasticity; Finite element analysis; Liver; MULTIFREQUENCY MR ELASTOGRAPHY; SHEAR-WAVE PROPAGATION; ACOUSTIC STRAIN WAVES; IN-VIVO; NONINVASIVE ASSESSMENT; BREAST-LESIONS; BRAIN; RECONSTRUCTION; MOLLIFICATION; ALGORITHM;
D O I
10.1007/s12650-017-0436-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Magnetic resonance elastography (MRE) is a technique to identify the viscoelastic moduli of biological tissues by solving the inverse problem from the displacement field of viscoelastic wave propagation in a tissue measured by MRI. Because finite element analysis (FEA) of MRE evaluates not only the viscoelastic model for a tissue but also the efficiency of the inversion algorithm, we developed FEA for MRE using commercial software called ANSYS, the Zener model for displacement field of a wave inside tissue, and an inversion algorithm called the modified integral method. The profile of the simulated displacement field by FEA agrees well with the experimental data measured by MRE for gel phantoms. Similarly, the value of storage modulus (i.e., stiffness) recovered using the modified integral method with the simulation data is consistent with the value given in FEA. Furthermore, applying the suggested FEA to a human liver demonstrates the effectiveness of the present simulation scheme.
引用
收藏
页码:133 / 145
页数:13
相关论文
共 50 条
  • [11] Viscoelastic properties of human cerebellum using magnetic resonance elastography
    Zhang, John
    Green, Michael A.
    Sinkus, Ralph
    Bilston, Lynne E.
    JOURNAL OF BIOMECHANICS, 2011, 44 (10) : 1909 - 1913
  • [12] Viscoelastic properties of porcine lenses using optical coherence elastography and inverse finite element analysis
    Cabeza-Gil, Iulen
    Tahsini, Vahoura
    Kling, Sabine
    EXPERIMENTAL EYE RESEARCH, 2023, 233
  • [13] On the use of multidimensional differential geometry to model covariant behaviors of viscoelastic or hyperelastic structures, illustrated with numerical simulations using spacetime finite element analysis
    Panicaud, Benoit
    Rouhaud, Emmanuelle
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2024, 295
  • [14] Algebrized approach for the finite element analysis of heterogeneous viscoelastic structures
    Bocciarelli, Massimiliano
    Pisani, Marco Andrea
    STRUCTURES, 2020, 24 : 783 - 790
  • [15] Comparative analysis of indentation and magnetic resonance elastography for measuring viscoelastic properties
    Chen, Yu
    Qiu, Suhao
    He, Zhao
    Yan, Fuhua
    Li, Ruokun
    Feng, Yuan
    ACTA MECHANICA SINICA, 2021, 37 (03) : 527 - 536
  • [16] Measurement of Viscoelastic Properties of Condensed Matter using Magnetic Resonance Elastography
    Gruwel, Marco L. H.
    Latta, Peter
    Matwiy, Brendon
    Sboto-Frankenstein, Uta
    Gervai, Patricia
    Tomanek, Boguslaw
    MEASUREMENT SCIENCE REVIEW, 2010, 10 (05): : 147 - 152
  • [17] Comparative analysis of indentation and magnetic resonance elastography for measuring viscoelastic properties
    Yu Chen
    Suhao Qiu
    Zhao He
    Fuhua Yan
    Ruokun Li
    Yuan Feng
    Acta Mechanica Sinica, 2021, 37 : 527 - 536
  • [18] Comparative analysis of indentation and magnetic resonance elastography for measuring viscoelastic properties
    Chen, Yu
    Qiu, Suhao
    He, Zhao
    Yan, Fuhua
    Li, Ruokun
    Feng, Yuan
    Feng, Yuan (fengyuan@sjtu.edu.cn); Li, Ruokun (lrk12113@rjh.com.cn), 1600, Springer Verlag (37): : 527 - 536
  • [19] Numerical analysis of some finite element methods for the approximation of differential model for viscoelastic flow
    Baranger, J.
    Sandri, D.
    Proceedings of the International Congress on Rheology, 1992,
  • [20] Waveguide effects and implications for cardiac magnetic resonance elastography: A finite element study
    Manduca, A.
    Rossman, T. L.
    Lake, D. S.
    Glaser, K. J.
    Arani, A.
    Arunachalam, S. P.
    Rossman, P. J.
    Trzasko, J. D.
    Ehman, R. L.
    Dragomir-Daescu, D.
    Araoz, P. A.
    NMR IN BIOMEDICINE, 2018, 31 (10)