Numerical simulations of magnetic resonance elastography using finite element analysis with a linear heterogeneous viscoelastic model

被引:4
|
作者
Tomita, Sunao [1 ]
Suzuki, Hayato [1 ]
Kajiwara, Itsuro [1 ]
Nakamura, Gen [2 ]
Jiang, Yu [3 ]
Suga, Mikio [4 ]
Obata, Takayuki [5 ]
Tadano, Shigeru [1 ]
机构
[1] Hokkaido Univ, Grad Sch Engn, Div Human Mech Syst & Design, Kita Ku, Kita 13,Nishi 8, Sapporo, Hokkaido 0608628, Japan
[2] Hokkaido Univ, Dept Math, Fac Sci, Kita Ku, Kita 10,Nishi 8, Sapporo, Hokkaido 0600810, Japan
[3] Shanghai Univ Finance & Econ, Dept Appl Math, 777 GuoDing Rd, Shanghai 200433, Peoples R China
[4] Chiba Univ, Ctr Frontier Med Engn, Inage Ku, 1-33 Yayoicho, Chiba, Chiba 2638522, Japan
[5] Natl Inst Radiol Sci, Inage Ku, 4-9-1 Anagawa, Chiba, Chiba 2638555, Japan
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
Magnetic resonance elastography; Elastogram; Viscoelasticity; Finite element analysis; Liver; MULTIFREQUENCY MR ELASTOGRAPHY; SHEAR-WAVE PROPAGATION; ACOUSTIC STRAIN WAVES; IN-VIVO; NONINVASIVE ASSESSMENT; BREAST-LESIONS; BRAIN; RECONSTRUCTION; MOLLIFICATION; ALGORITHM;
D O I
10.1007/s12650-017-0436-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Magnetic resonance elastography (MRE) is a technique to identify the viscoelastic moduli of biological tissues by solving the inverse problem from the displacement field of viscoelastic wave propagation in a tissue measured by MRI. Because finite element analysis (FEA) of MRE evaluates not only the viscoelastic model for a tissue but also the efficiency of the inversion algorithm, we developed FEA for MRE using commercial software called ANSYS, the Zener model for displacement field of a wave inside tissue, and an inversion algorithm called the modified integral method. The profile of the simulated displacement field by FEA agrees well with the experimental data measured by MRE for gel phantoms. Similarly, the value of storage modulus (i.e., stiffness) recovered using the modified integral method with the simulation data is consistent with the value given in FEA. Furthermore, applying the suggested FEA to a human liver demonstrates the effectiveness of the present simulation scheme.
引用
收藏
页码:133 / 145
页数:13
相关论文
共 50 条
  • [1] Numerical simulations of magnetic resonance elastography using finite element analysis with a linear heterogeneous viscoelastic model
    Sunao Tomita
    Hayato Suzuki
    Itsuro Kajiwara
    Gen Nakamura
    Yu Jiang
    Mikio Suga
    Takayuki Obata
    Shigeru Tadano
    Journal of Visualization, 2018, 21 : 133 - 145
  • [2] INTERPRETING MICROSCOPIC MAGNETIC RESONANCE ELASTOGRAPHY MEASUREMENTS USING FINITE ELEMENT ANALYSIS
    Liu, Yifei
    Yasar, Temel
    Royston, Thomas J.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 3A, 2014,
  • [3] Benchmarking finite element analysis of linear viscoelastic materials using a beam model
    Merrett, Craig
    Baldassarre, Alessandro
    Balsara, Hiren
    Martinez, Marcias
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2025, 29 (01)
  • [4] Numerical simulation of wave propagation through interfaces using the extended finite element method for magnetic resonance elastography
    Du, Quanshangze
    Bel-Brunon, Aline
    Lambert, Simon Auguste
    Hamila, Nahiene
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2022, 151 (05): : 3481 - 3495
  • [5] Finite element simulations of wave propagation in soils using a Viscoelastic model
    Cheng, Z.
    Leong, E. C.
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2016, 88 : 207 - 214
  • [6] Comparison of ultrasound elastography, magnetic resonance elastography and finite element model to quantify nonlinear shear modulus
    Page, Gwenael
    Bied, Marion
    Garteiser, Philippe
    Van Beers, Bernard
    Etaix, Nicolas
    Fraschini, Christophe
    Bel-Brunon, Aline
    Gennisson, Jean-Luc
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (20):
  • [7] A TRANSIENT FINITE-ELEMENT ANALYSIS OF LINEAR VISCOELASTIC MATERIAL MODEL
    WANG, YC
    MURTI, V
    VALLIAPPAN, S
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 1992, 16 (04) : 265 - 294
  • [8] A finite element model for analyzing shear wave propagation observed in magnetic resonance elastography
    Chen, QS
    Ringleb, SI
    Manduca, A
    Ehman, RL
    An, KN
    JOURNAL OF BIOMECHANICS, 2005, 38 (11) : 2198 - 2203
  • [9] INVESTIGATION OF MAGNETIC RESONANCE SURFACE MICROCOILS USING FINITE ELEMENT SIMULATIONS
    Dehkhoda, Fahimeh
    Frounchi, Javad
    Mohammadzadeh, Mohammad
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2012, 24 (05): : 377 - 382
  • [10] Numerical finite element formulation of the Schapery non-linear viscoelastic material model
    Haj-Ali, RM
    Muliana, AH
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 59 (01) : 25 - 45