USE OF ADIPOSE-DERIVED STEM CELLS TO FABRICATE SCAFFOLDLESS TISSUE-ENGINEERED NEURAL CONDUITS IN VITRO

被引:12
|
作者
Adams, A. M. [1 ]
Arruda, E. M. [2 ,3 ,4 ]
Larkin, L. M. [1 ,3 ]
机构
[1] Univ Michigan, Dept Mol & Integrat Physiol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[3] Dept Biomed Engn, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Program Macromol Sci & Engn, Ann Arbor, MI 48109 USA
关键词
adipose-derived stem cells (ASC); peripheral nerve repair; nerve conduit; tissue engineering; PERIPHERAL-NERVE REPAIR; DIFFERENTIATION; STRATEGIES;
D O I
10.1016/j.neuroscience.2011.11.004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Peripheral nerve injuries resulting from trauma or disease often necessitate surgical intervention. Although the gold standard for such repairs uses nerve autografts, alternatives that do not require invasive harvesting of autologous nerve tissues are currently being designed and evaluated. We previously established the use of scaffoldless engineered neural conduits (ENCs) fabricated from primary cells as one such alternative in sciatic nerve repair in rats [Baltich et al. (2010) In Vitro Cell Dev Biol Anim 46(5):438-444]. The present study establishes protocols for fabricating neural conduits from adipose-derived stem cells (ASCs) differentiated to either a fibroblast or neural lineage and co-cultured into a three-dimensional (3-D) scaffoldless tissue-ENC. Addition of ascorbic acid-2-phosphate and fibroblast growth factor (FGF)-2 to the medium induced and differentiated ASCs to a fibroblast lineage in more than 90% of the cell population, as confirmed by collagen I expression. ASC-differentiated fibroblasts formed monolayers, delaminated, and formed 3-D conduits. Neurospheres were formed by culturing ASCs on non-adherent surfaces in serum-free neurobasal medium with the addition of epidermal growth factor (EGF) and FGF-2. The addition of 10 ng EGF and 10 ng FGF-2 produced larger and more numerous neurospheres than treatments of lower EGF and FGF-2 concentrations. Subsequent differentiation to glial-like cells was confirmed by the expression of S100. ASC-derived fibroblast monolayers and neurospheres were co-cultured to fabricate a 3-D scaffoldless tissue-ENC. Their nerve-like structure and incorporation of glial-like cells, which would associate with regenerating axons, may make these novel, stem cell-derived neural conduits an efficacious technology for repairing critical gaps following peripheral nerve injury. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:349 / 356
页数:8
相关论文
共 50 条
  • [31] The fate of adipose tissue and adipose-derived stem cells in allograft
    Sadia Farhana
    Yew Chun Kai
    Ramlah Kadir
    Wan Azman Wan Sulaiman
    Nor Asyikin Nordin
    Nur Azida Mohd Nasir
    Cell and Tissue Research, 2023, 394 (2) : 269 - 292
  • [32] Update on Cryopreservation of Adipose Tissue and Adipose-derived Stem Cells
    Shu, Zhiquan
    Gao, Dayong
    Pu, Lee L. Q.
    CLINICS IN PLASTIC SURGERY, 2015, 42 (02) : 209 - +
  • [33] The fate of adipose tissue and adipose-derived stem cells in allograft
    Farhana, Sadia
    Kai, Yew Chun
    Kadir, Ramlah
    Sulaiman, Wan Azman Wan
    Nordin, Nor Asyikin
    Nasir, Nur Azida Mohd
    CELL AND TISSUE RESEARCH, 2023, 394 (02) : 269 - 292
  • [34] Physiologically based microenvironment for in vitro neural differentiation of adipose-derived stem cells
    Graziano, Adriana Carol Eleonora
    Avola, Rosanna
    Perciavalle, Vincenzo
    Nicoletti, Ferdinando
    Cicala, Gianluca
    Coco, Marinella
    Cardile, Venera
    WORLD JOURNAL OF STEM CELLS, 2018, 10 (03): : 23 - 33
  • [35] Tissue with high intelligence quotient Adipose-derived stem cells in neural regeneration
    George N.Chaldakov
    Marco Fiore
    Anton B.Tonchev
    Mariyana G.Hristova
    Vesselka Nikolova
    Luigi Aloe
    Neural Regeneration Research, 2009, 4 (12) : 1116 - 1120
  • [36] Tissue with high intelligence quotient Adipose-derived stem cells in neural regeneration
    Chaldakov, George N.
    Fiore, Marco
    Tonchev, Anton B.
    Hristova, Mariyana G.
    Nikolova, Vesselka
    Aloe, Luigi
    NEURAL REGENERATION RESEARCH, 2009, 4 (12) : 1116 - 1120
  • [37] Adipose tissue engineering with naturally derived scaffolds and adipose-derived stem cells
    Flynn, Lauren
    Prestwich, Glenn D.
    Semple, John L.
    Woodhouse, Kimberly A.
    BIOMATERIALS, 2007, 28 (26) : 3834 - 3842
  • [38] Adipose-derived stem cells differentiate to keratocytes in vitro
    Du, Yiqin
    Roh, Danny S.
    Funderburgh, Martha L.
    Mann, Mary M.
    Marra, Kacey G.
    Rubin, J. Peter
    Li, Xuan
    Funderburgh, James L.
    MOLECULAR VISION, 2010, 16 (287): : 2680 - 2689
  • [39] In vitro effects of tamoxifen on adipose-derived stem cells
    Pike, Steven
    Zhang, Ping
    Wei, Zhengyu
    Wu, Nan
    Klinger, Aaron
    Chang, Shaohua
    Jones, Robert
    Carpenter, Jeffrey
    Brown, Spencer A.
    DiMuzio, Paul
    Tulenko, Thomas
    Liu, Yuan
    WOUND REPAIR AND REGENERATION, 2015, 23 (05) : 728 - 736
  • [40] Experimental study on repairing skin defect by tissue-engineered skin substitute compositely constructed by adipose-derived stem cells and fibrin gel
    Zeng, R-X.
    He, J-Y.
    Zhang, Y-L.
    Liu, X-X.
    Zhang, Y.
    Tang, Q.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2017, 21 : 1 - 5