A mollified approach to reconstruct an unknown boundary condition for the heat conduction equation of fractional order

被引:0
|
作者
Babaei, Afshin [1 ]
Banihashemi, Seddigheh [1 ]
机构
[1] Univ Mazandaran, Dept Appl Math, Babolsar 4741695447, Iran
关键词
heat conduction equation; Caputo's derivative; ill-posedness; mollification; finite difference;
D O I
10.1504/IJCSM.2021.120685
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider an inverse problem of time fractional heat conduction problem. It is shown that the problem is ill-posed. A method is investigated based on the finite difference to find heat distribution and boundary values. The discrete mollification regularisation is applied to obtain a stable numerical solution. Finally, some test problems are investigated to show the ability of the proposed scheme.
引用
收藏
页码:369 / 379
页数:11
相关论文
共 50 条
  • [21] A Duhamel Integral Based Approach to Identify an Unknown Radiation Term in a Heat Equation with Non-linear Boundary Condition
    Pourgholi, R.
    Abtahi, M.
    Saeedi, A.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2012, 7 (01): : 52 - 70
  • [22] A PROBLEM WITH THE OPERATOR M. SAIGO IN THE BOUNDARY CONDITION FOR A LOADED HEAT CONDUCTION EQUATION
    Tarasenko, A. V.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2012, (03): : 41 - 46
  • [23] Thermoelasticity that uses fractional heat conduction equation
    Povstenko Y.Z.
    Journal of Mathematical Sciences, 2009, 162 (2) : 296 - 305
  • [24] Boundary regularity for the fractional heat equation
    Fernandez-Real, Xavier
    Ros-Oton, Xavier
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (01) : 49 - 64
  • [25] Boundary regularity for the fractional heat equation
    Xavier Fernández-Real
    Xavier Ros-Oton
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 : 49 - 64
  • [26] An Efficient Approach for Solving One-Dimensional Fractional Heat Conduction Equation
    Batiha, Iqbal M.
    Jebril, Iqbal H.
    Zuriqat, Mohammad
    Kanaan, Hamza S.
    Momani, Shaher
    FRONTIERS IN HEAT AND MASS TRANSFER, 2023, 21 : 487 - 504
  • [27] Corrigendum to "Complex order fractional differential equation in complex domain with mixed boundary condition"
    Yadav, Ashish
    Mathur, Trilok
    Agarwal, Shivi
    CHAOS SOLITONS & FRACTALS, 2024, 188
  • [28] Solvability Issues of a Pseudo-Parabolic Fractional Order Equation with a Nonlinear Boundary Condition
    Aitzhanov, Serik E.
    Berdyshev, Abdumauvlen S.
    Bekenayeva, Kymbat S.
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [29] Fractional-order heat conduction models from generalized Boltzmann transport equation
    Li, Shu-Nan
    Cao, Bing-Yang
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2172):
  • [30] CONFORMAL MAPPING FOR HEAT CONDUCTION IN A REGION WITH AN UNKNOWN BOUNDARY
    GOLDSTEIN, ME
    SIEGEL, R
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1970, 13 (10) : 1632 - +