Multi-granularity episodic contrastive learning for few-shot learning

被引:17
|
作者
Zhu, Pengfei [1 ,2 ]
Zhu, Zhilin [1 ]
Wang, Yu [1 ,2 ]
Zhang, Jinglin [3 ]
Zhao, Shuai [1 ,4 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300350, Peoples R China
[2] Haihe Lab Informat Technol Applicat Innovat, Tianjin, Peoples R China
[3] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
[4] ICV Data Dept China Automot Data Co Ltd, Beijing, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Multi-granularity computing; Episodic contrastive learning; Few-shot learning; Deep learning;
D O I
10.1016/j.patcog.2022.108820
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot learning (FSL) aims at fast adaptation to novel classes with few training samples. Among FSL methods, meta-learning and transfer learning-based methods are the most powerful ones. However, most of them rely to some extent on cross-entropy loss, which leads to representations that are overly concerned with the classes already seen, and in turn leads to sub-optimal generalization on novel classes. In this study, we are inspired by meta-learning and transfer learning-based methods and believe good feature representations are vital for FSL. To this end, we propose a new multi-granularity episodic contrastive learning method (MGECL) that introduces contrastive learning into the episode training process. In particular, by enforcing our proposed contrastive loss on both class and instance granularities, the model is able to extract category-independent discriminative patterns and learn richer and more transferable feature representations. Extensive experiments demonstrate that our proposed method achieves state-of-the-art performance on three popular few-shot benchmarks. Our code is available at https://github.com/z1358/MGECL_PR. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Multi-Granularity Contrastive Learning for Graph with Hierarchical Pooling
    Liu, Peishuo
    Zhou, Cangqi
    Liu, Xiao
    Zhang, Jing
    Li, Qianmu
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT IV, 2023, 14257 : 499 - 511
  • [12] Multimodal variational contrastive learning for few-shot classification
    Pan, Meihong
    Shen, Hongbin
    [J]. APPLIED INTELLIGENCE, 2024, 54 (02) : 1879 - 1892
  • [13] Supervised Contrastive Learning for Few-Shot Action Classification
    Han, Hongfeng
    Fei, Nanyi
    Lu, Zhiwu
    Wen, Ji-Rong
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT III, 2023, 13715 : 512 - 528
  • [14] Few-shot image generation with reverse contrastive learning
    Gou, Yao
    Li, Min
    Zhang, Yusen
    He, Zhuzhen
    He, Yujie
    [J]. NEURAL NETWORKS, 2024, 169 : 154 - 164
  • [15] Multimodal variational contrastive learning for few-shot classification
    Meihong Pan
    Hongbin Shen
    [J]. Applied Intelligence, 2024, 54 : 1879 - 1892
  • [16] Few-shot Object Detection with Refined Contrastive Learning
    Shangguan, Zeyu
    Huai, Lian
    Liu, Tong
    Jiang, Xingqun
    [J]. 2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2023, : 991 - 996
  • [17] Mask Mixup Model: Enhanced Contrastive Learning for Few-Shot Learning
    Xie, Kai
    Gao, Yuxuan
    Chen, Yadang
    Che, Xun
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (14):
  • [18] MINING: Multi-Granularity Network Alignment Based on Contrastive Learning
    Zhang, Zhongbao
    Gao, Shuai
    Su, Sen
    Sun, Li
    Chen, Ruiyang
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 12785 - 12798
  • [19] Multi-granularity contrastive learning model for next POI recommendation
    Zhu, Yunfeng
    Yao, Shuchun
    Sun, Xun
    [J]. FRONTIERS IN NEUROROBOTICS, 2024, 18
  • [20] Few-shot Sentiment Analysis Based on Adaptive Prompt Learning and Contrastive Learning
    Shi, Cong
    Zhai, Rui
    Song, Yalin
    Yu, Junyang
    Li, Han
    Wang, Yingqi
    Wang, Longge
    [J]. INFORMATION TECHNOLOGY AND CONTROL, 2023, 52 (04): : 1058 - 1072