Deep Learning for Constrained Utility Maximisation

被引:2
|
作者
Davey, Ashley [1 ]
Zheng, Harry [1 ]
机构
[1] Imperial Coll, Dept Math, London SW7 2BZ, England
基金
英国工程与自然科学研究理事会;
关键词
Stochastic control; Deep learning; Primal and dual BSDEs; HJB equation; Utility maximisation; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC-CONTROL; ALGORITHMS; NETWORKS;
D O I
10.1007/s11009-021-09912-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes two algorithms for solving stochastic control problems with deep learning, with a focus on the utility maximisation problem. The first algorithm solves Markovian problems via the Hamilton Jacobi Bellman (HJB) equation. We solve this highly nonlinear partial differential equation (PDE) with a second order backward stochastic differential equation (2BSDE) formulation. The convex structure of the problem allows us to describe a dual problem that can either verify the original primal approach or bypass some of the complexity. The second algorithm utilises the full power of the duality method to solve non-Markovian problems, which are often beyond the scope of stochastic control solvers in the existing literature. We solve an adjoint BSDE that satisfies the dual optimality conditions. We apply these algorithms to problems with power, log and non-HARA utilities in the Black-Scholes, the Heston stochastic volatility, and path dependent volatility models. Numerical experiments show highly accurate results with low computational cost, supporting our proposed algorithms.
引用
收藏
页码:661 / 692
页数:32
相关论文
共 50 条
  • [1] Deep Learning for Constrained Utility Maximisation
    Ashley Davey
    Harry Zheng
    [J]. Methodology and Computing in Applied Probability, 2022, 24 : 661 - 692
  • [2] UTILITY MAXIMISATION AS A PATHWAY FOR MAXIMISATION OF HAPPINESS
    Mitra, Siddhartha
    [J]. INTERDISCIPLINARY DESCRIPTION OF COMPLEX SYSTEMS, 2013, 11 (03) : 302 - 309
  • [3] Delay-constrained utility maximisation in multi-hop random access networks
    Khodaian, A. M.
    Khalaj, B. H.
    [J]. IET COMMUNICATIONS, 2010, 4 (16) : 1908 - 1918
  • [4] Bounds for Constrained Entropy Maximisation
    Chan, Terence H.
    Grant, Alex
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 341 - 345
  • [5] CONSTRAINED MAXIMISATION AND DESIGN OF EXPERIMENTS
    ATKINSON, AC
    [J]. TECHNOMETRICS, 1969, 11 (03) : 616 - &
  • [6] Utility maximisation in incomplete markets
    Schachermayer, W
    [J]. STOCHASTIC METHODS IN FINANCE, 2005, 1856 : 255 - 293
  • [7] Dual random utility maximisation
    Manzini, Paola
    Mariotti, Marco
    [J]. JOURNAL OF ECONOMIC THEORY, 2018, 177 : 162 - 182
  • [8] Contrasts of Relative Advantage Maximisation with Random Utility Maximisation and Regret Minimisation
    Leong, Waiyan
    Hensher, David A.
    [J]. JOURNAL OF TRANSPORT ECONOMICS AND POLICY, 2015, 49 : 167 - 186
  • [9] Robust utility maximisation with intractable claims
    Yunhong Li
    Zuo Quan Xu
    Xun Yu Zhou
    [J]. Finance and Stochastics, 2023, 27 : 985 - 1015
  • [10] Robust utility maximisation with intractable claims
    Li, Yunhong
    Xu, Zuo Quan
    Zhou, Xun Yu
    [J]. FINANCE AND STOCHASTICS, 2023, 27 (04) : 985 - 1015