Understanding the Role of Adaptivity in Machine Teaching: The Case of Version Space Learners

被引:0
|
作者
Chen, Yuxin [1 ]
Singla, Adish [2 ]
Mac Aodha, Oisin [1 ]
Perona, Pietro [1 ]
Yue, Yisong [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] MPI SWS, Saarbrucken, Germany
关键词
SAMPLE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In real-world applications of education, an effective teacher adaptively chooses the next example to teach based on the learner's current state. However, most existing work in algorithmic machine teaching focuses on the batch setting, where adaptivity plays no role. In this paper, we study the case of teaching consistent, version space learners in an interactive setting. At any time step, the teacher provides an example, the learner performs an update, and the teacher observes the learner's new state. We highlight that adaptivity does not speed up the teaching process when considering existing models of version space learners, such as the "worst-case" model (the learner picks the next hypothesis randomly from the version space) and the "preference-based" model (the learner picks hypothesis according to some global preference). Inspired by human teaching, we propose a new model where the learner picks hypotheses according to some local preference defined by the current hypothesis. We show that our model exhibits several desirable properties, e.g., adaptivity plays a key role, and the learner's transitions over hypotheses are smooth/interpretable. We develop adaptive teaching algorithms, and demonstrate our results via simulation and user studies.
引用
下载
收藏
页数:11
相关论文
共 50 条