Distribution of orbits of geometrically finite groups acting on null vectors

被引:1
|
作者
Tamam, Nattalie [1 ]
Warren, Jacqueline M. [1 ]
机构
[1] Univ Calif San Diego, Dept Math, San Diego, CA 92103 USA
关键词
Homogeneous dynamics; Ergodic theory; Discrete subgroups of Lie groups; Flows in homogeneous spaces; LATTICE ORBITS; R-2;
D O I
10.1007/s10711-021-00669-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the distribution of non-discrete orbits of geometrically finite groups in SO(n, 1) acting on Rn+1, and more generally on the quotient of SO(n, 1) by a horospherical subgroup. Using equidistribution of horospherical flows, we obtain both asymptotics for the distribution of orbits for the action of general geometrically finite groups, and we obtain quantitative statements with additional assumptions.
引用
收藏
页数:38
相关论文
共 50 条
  • [41] Regular orbits of finite primitive solvable groups
    Yang, Yong
    JOURNAL OF ALGEBRA, 2010, 323 (10) : 2735 - 2755
  • [42] Finite groups with six or seven automorphism orbits
    Dantas, Alex Carrazedo
    Garonzi, Martino
    Bastos, Raimundo
    JOURNAL OF GROUP THEORY, 2017, 20 (05) : 945 - 954
  • [43] ON GROUPS ACTING ON LOCALLY FINITE GRAPHS
    BERGMAN, GM
    ANNALS OF MATHEMATICS, 1968, 88 (02) : 335 - &
  • [44] Orbits of Sylow subgroups of finite permutation groups
    Bamberg, John
    Bors, Alexander
    Devillers, Alice
    Giudici, Michael
    Praeger, Cheryl E.
    Royle, Gordon F.
    JOURNAL OF ALGEBRA, 2022, 607 : 107 - 133
  • [45] ON LARGE ORBITS OF FINITE SOLVABLE GROUPS ON CHARACTERS
    Yang, Yong
    Li, Jinbao
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 108 (03) : 438 - 442
  • [46] Automorphism group orbits on finite simple groups
    Jafari, Leyli
    Kohl, Stefan
    O'Brien, E. A.
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (08) : 3294 - 3300
  • [47] Finite groups acting on homology manifolds
    Aschbacher, M
    PACIFIC JOURNAL OF MATHEMATICS, 1997, : 3 - 36
  • [48] GROUPS ACTING ON FINITE AFFINE SPACES
    MORTIMER, B
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1983, 28 (AUG): : 27 - 30
  • [49] Finite groups acting on elliptic surfaces
    Constantin Shramov
    European Journal of Mathematics, 2022, 8 : 1213 - 1224
  • [50] Finite groups acting on elliptic surfaces
    Shramov, Constantin
    EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (03) : 1213 - 1224