Enhancing the Reliability of Epileptic Seizure Alarms for Scalp EEG Signals

被引:0
|
作者
Khalid, Muhammad Imran [1 ,2 ]
Aldosari, Saeed Abdullah [1 ,2 ]
Alshebeili, Saleh A. [1 ,2 ]
Alotaiby, Turky [3 ]
机构
[1] King Saud Univ, Dept Elect Engn, Riyadh 11362, Saudi Arabia
[2] King Saud Univ, KACST TIC Radio Frequency & Photon E Sco RFTONICS, Riyadh 11362, Saudi Arabia
[3] KASCT, Riyadh 11442, Saudi Arabia
关键词
EEG; Epileptic Seizure detection and Prediction; Largest Lyapunov Exponent; Energy Ratio of EEG sub bands;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the key requirement for the development of seizure prediction system is that the seizure alarms generated should be reliable, i.e. the system should have high seizure detection rate and minimum false alarm rate. In this paper, we explore the relationship between the chaotic behavior and energy ratios of the sub bands of an EEG signal. This relationship will then be used to enhance the reliability of seizure alarms generated by measuring the chaoticity of EEG signals using the Largest Lyapunov Exponent (LLE). It is shown, in this paper, that when both LLE and energy ratios of EEC signal sub bands are used to predict an incoming seizure, then the reliability of prediction system gets enhanced; hence any alarm generated in this case must be taken by the patient (caregivers) seriously and appropriate safety measures must also be taken place.
引用
收藏
页码:1302 / 1306
页数:5
相关论文
共 50 条
  • [1] Automatic epileptic seizure prediction based on scalp EEG and ECG signals
    Hoyos-Osorio, Keider
    Castaneda-Gonzalez, Jairo
    Daza-Santacoloma, Genaro
    [J]. 2016 XXI SYMPOSIUM ON SIGNAL PROCESSING, IMAGES AND ARTIFICIAL VISION (STSIVA), 2016,
  • [2] Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals
    Alotaiby, Turky N.
    Alshebeili, Saleh A.
    Alotaibi, Faisal M.
    Alrshoud, Saud R.
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2017, 2017
  • [3] EPILEPTIC SEIZURE PREDICTION BY SCALP EEG ANALYSIS
    Kelly, Kevin M.
    Shiau, D.
    Kern, R. T.
    Chien, J. H.
    Pardalos, P. M.
    Valeriano, J. P.
    Halford, J. J.
    Sackellares, J. C.
    [J]. EPILEPSIA, 2009, 50 : 30 - 30
  • [4] Epileptic Seizure Prediction by Scalp EEG Analysis
    Sackellares, J. Chris
    Shiau, Deng-Shan
    Chien, Jui-Hong
    Halford, Jonathan
    Kelly, Kevin M.
    [J]. ANNALS OF NEUROLOGY, 2009, 66 : S13 - S14
  • [5] Automatic Epileptic Seizure Prediction in Scalp EEG
    Mohan, Nirmal
    Shanir, Muhammed P. P.
    Sulthan, Noufal
    Sofiya, S.
    Khan, Kashif Ahmad
    [J]. 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT CIRCUITS AND SYSTEMS (ICICS 2018), 2018, : 275 - 280
  • [6] Epileptic Seizure Prediction from the Scalp EEG Signals by using Random Forest Algorithm
    Hu, Ziyu
    Han, Chunxiao
    Guo, Fengjuan
    Qin, Qing
    Li, Shanshan
    Qin, Yingmei
    [J]. 2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 669 - 674
  • [7] Canonical decomposition of scalp EEG in epileptic seizure localisation
    De Vos, Maarten
    De lathauwerl, Lieven
    Van Paesschen, W.
    Van Huffel, Sabine
    [J]. CONFERENCE RECORD OF THE FORTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1-5, 2007, : 408 - +
  • [8] Geometric Deep Learning for Subject Independent Epileptic Seizure Prediction Using Scalp EEG Signals
    Dissanayake, Theekshana
    Fernando, Tharindu
    Denman, Simon
    Sridharan, Sridha
    Fookes, Clinton
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (02) : 527 - 538
  • [9] Deep Learning for Patient-Independent Epileptic Seizure Prediction Using Scalp EEG Signals
    Dissanayake, Theekshana
    Fernando, Tharindu
    Denman, Simon
    Sridharan, Sridha
    Fookes, Clinton
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (07) : 9377 - 9388
  • [10] Epileptic Seizure Prediction Using Convolutional Neural Networks and Fusion Features on Scalp EEG Signals
    Lan, Qixin
    Yao, Bin
    Qing, Tao
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2023, E106D (05) : 821 - 823