The epilepsy is a common neurological disease caused by a neuronal electric activity imbalance in any side of the brain, named epileptic focus. The epilepsy is characterized by recurrent and sudden seizures. Recently, researchers found that approximately 50% of epileptic patients feel auras (subjective phenomenon which precedes and indicates an epileptic seizure onset) associated to a physiological anomaly. In this research, a non-invasive seizure prediction methodology is developed in order to improve the quality of life of the patients with epilepsy, alerting them about potential seizure and avoiding falls, injuries, wounds or even death. The research addresses the recognition of patterns in electroencephalographic (EEG) and electrocardiographic (ECG) signals taken from 7 patients with focal epilepsy whom are treated at the Instituto de Epilepsia y Parkinson del Eje Cafetero-NEUROCENTRO-. The bio-signals were independently analyzed, at least 15 minutes before the seizure onset and in periods with no seizure were considered. The methodology considers the generation of features computed over the discrete wavelet transform of the EEG signal and others related to the heart rate variability in the ECG signal. Using feature selection techniques such as Sequential Forward Selection (SFS) with classification algorithms as cost functions (linear-Bayes and k-nearest neighbors classifier), we found which features have the most relevant information about pre-ictal state and which of them are the most appropriated for seizure forecasting, therefore we found that ECG signal could be a potential resource for predicting epileptic seizures, and we concluded that there are patterns in EEG and ECG signals that, via machine learning algorithms, can predict the epileptic seizure onset with a total average accuracy of 94%.