Strengthened Wiegold Conjecture in the Theory of Nilpotent Lie Algebras

被引:0
|
作者
Skutin, A. A. [1 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Moscow 119899, Russia
基金
俄罗斯基础研究基金会;
关键词
nilpotent Lie algebras; finite p-groups; Wiegold conjecture; iterated constructions; COMMUTATOR SUBGROUPS; BREADTH;
D O I
10.1134/S000143462205008X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we strengthen the assertion of the Wiegold conjecture for nilpotent Lie algebras over an infinite field by proving that if there exists a subset of a nilpotent Lie algebra g consisting of elements of breadth not exceeding n and satisfying some additional conditions, then the dimension of the commutator subalgebra g' of g does not exceed n(n + 1)/2.
引用
收藏
页码:747 / 753
页数:7
相关论文
共 50 条