All-solution processed composite hole transport layer for quantum dot light emitting diode

被引:42
|
作者
Zhang, Xiaoli [1 ,2 ]
Dai, Haitao [1 ]
Zhao, Junliang [1 ]
Wang, Shuguo [1 ]
Sun, Xiaowei [3 ]
机构
[1] Tianjin Univ, Sch Sci, Tianjin Key Lab Low Dimens Mat Phys & Preparing T, Tianjin 300072, Peoples R China
[2] Synerget Innovat Ctr Chem Sci & Engn, Tianjin, Peoples R China
[3] South Univ Sci & Technol China, Dept Elect & Elect Engn, Tangchang Rd 1088, Shenzhen 518055, Guangdong, Peoples R China
关键词
Quantum dot light emitting diode; Solution processed method; Composite hole transport layer; SEMICONDUCTING POLYMER; ENERGY-TRANSFER; EFFICIENT; NANOCRYSTALS; DEVICES; CHARGE; OXIDE; ELECTROLUMINESCENCE; PERFORMANCE; SEPARATION;
D O I
10.1016/j.tsf.2016.02.017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present work, poly-TPD and TCTA composite hole transport layer (HTL) was employed in solution processed CdSe/ZnS quantum dot light emitting diodes (QLEDs). As the doping level of TCTA can determine the carriers transport efficiency of HTL, the proper mixing ratio of TCTA and poly-TPD should be found to optimize the performance of composite HTL for QLEDs. The doping of poly-TPD by low TCTA content can make its HOMO level lower and then reduce the energy barrier height from HTL to quantum dots (QDs), whereas the doping of poly-TPD by the concentrated TCTA results in the degraded performance of QLEDs due to its decreased hole transport mobility. By using the optimized composition with poly-TPD: TCTA (3:1) as the hole transport layer, the luminescence of the device exhibits about double enhancement compared with that of poly-TPD based device. The improvement of luminescence is mainly attributed to the lower energy barrier of hole injection. The Forster resonant energy transfer (FRET) mechanism in the devices was investigated through theoretical and experimental analysis and the results indicate that the TCTA doping makes no difference on FRET. Therefore, the charge injection mechanism dominates the improved performance of the devices. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:187 / 192
页数:6
相关论文
共 50 条
  • [31] An efficient solution-processed hole injection layer with phosphomolybdic acid in quantum dot light-emitting diodes
    Dong, Dan
    Lian, Lu
    Wang, Han
    He, Gufeng
    ORGANIC ELECTRONICS, 2018, 62 : 320 - 326
  • [32] Solution-processed quantum dot light-emitting diodes based on NiO nanocrystals hole injection layer
    Zhang, Yidong
    Wang, Shujie
    Chen, Ling
    Fang, Yan
    Shen, Huaibin
    Du, Zuliang
    ORGANIC ELECTRONICS, 2017, 44 : 189 - 197
  • [33] Solution-processed quantum dot light-emitting diodes with PANI: PSS hole-transport interlayers
    Park, Young Ran
    Doh, Ji Hoon
    Shin, Koo
    Seo, Young Soo
    Kim, Yun Seok
    Kim, Soo Young
    Choi, Won Kook
    Hong, Young Joon
    ORGANIC ELECTRONICS, 2015, 19 : 131 - 139
  • [34] Design of polymeric hole transport materials for solution processed organic light emitting diode devices
    Radu, Nora S.
    Gentry, Frederick
    Rossi, Gene M.
    Fennimore, Adam
    Gao, Weiying
    Merlo, Jeffrey
    Chesterfield, Reid
    Smith, Eric
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [35] Regulation of hole transport layer for perovskite quantum dot light-emitting diodes
    Zheng, Ronghong
    Huang, Dong
    Shen, Dongyang
    Luo, Chengzhao
    Chen, Yu
    2021 5TH INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY, ENVIRONMENT AND CHEMICAL SCIENCE (AEECS 2021), 2021, 245
  • [36] Hole injection of quantum dot light-emitting diodes facilitated by multilayered hole transport layer
    Ha Hwang, Jeong
    Kim, Junmo
    Kim, Byong Jae
    Park, Myeongjin
    Kwon, Yong Woo
    An, Myungchan
    Shin, Dong Yeol
    Jeon, Jae Min
    Kim, Jun Young
    Lee, Wonho
    Lim, Jaehoon
    Lee, Donggu
    APPLIED SURFACE SCIENCE, 2021, 558
  • [37] Highly-Efficient Solution Processed Yellow Organic Light Emitting Diode With Tungsten Trioxide Hole Injection/Transport Layer
    Kumar, Pankaj
    Aggrawal, Neeraj
    Choudhary, Surya Deo
    Gautam, Anil Kumar
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2020, 19 : 61 - 66
  • [38] Highly-Efficient Solution Processed Yellow Organic Light Emitting Diode with Tungsten Trioxide Hole Injection/Transport Layer
    Kumar, Pankaj
    Agrawal, Niraj
    Choudhary, Surya Deo
    Gautam, Anil Kumar
    IEEE Transactions on Nanotechnology, 2020, 19 : 61 - 66
  • [39] Aqueous solution-processed molybdenum oxide as an efficient hole injection layer for flexible quantum dot light emitting diodes
    Zheng, Congxiu
    Li, Fushan
    Zeng, Qunying
    Hu, Hailong
    Guo, Tailiang
    THIN SOLID FILMS, 2019, 669 : 387 - 391
  • [40] Solution Processed Tungsten Oxide Interfacial Layer for Efficient Hole-Injection in Quantum Dot Light-Emitting Diodes
    Yang, Xuyong
    Mutlugun, Evren
    Zhao, Yongbiao
    Gao, Yuan
    Leck, Kheng Swee
    Ma, Yanyan
    Ke, Lin
    Tan, Swee Tiam
    Demir, Hilmi Volkan
    Sun, Xiao Wei
    SMALL, 2014, 10 (02) : 247 - 252