An overview of existing methods and recent advances in sequential Monte Carlo

被引:627
|
作者
Cappe, Olivier [1 ]
Godsill, Simon J.
Moulines, Eric
机构
[1] Telecom Paris, CNRS, LTCI, F-75634 Paris 13, France
[2] Univ Cambridge, Signal Proc & Commun Lab, Cambridge CB2 1PZ, England
关键词
bayesian dynamical model; filtering; prediction and smoothing; hidden Markov models; parameter estimation; particle filter; sequential Monte Carlo; state-space model; tracking;
D O I
10.1109/JPROC.2007.893250
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It is now over a decade since the pioneering contribution of Gordon et al. (1993), which is commonly regarded as the first instance of modern sequential Monte Carlo (SMC) approaches. initially focussed on applications to tracking and vision, these techniques are now very widespread and have had a significant impact in virtually all areas of signal and image processing concerned with Bayesian dynamical models. This paper is intended to serve both as an introduction to SMC algorithms for nonspecialists and as a reference to recent contributions in domains where the techniques are still under significant development, including smoothing, estimation of fixed parameters and use of SMC methods beyond the standard filtering contexts.
引用
收藏
页码:899 / 924
页数:26
相关论文
共 50 条
  • [1] ON SEQUENTIAL MONTE CARLO: AN OVERVIEW
    Liu, Jun S.
    [J]. STATISTICA SINICA, 2024, 34 : 1067 - 1070
  • [2] Quantum Monte Carlo Methods in Nuclear Physics: Recent Advances
    Lynn, J. E.
    Tews, I.
    Gandolfi, S.
    Lovato, A.
    [J]. ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, VOL 69, 2019, 69 : 279 - 305
  • [3] Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking
    Mihaylova, Lyudmila
    Carmi, Avishy Y.
    Septier, Francois
    Gning, Amadou
    Pang, Sze Kim
    Godsill, Simon
    [J]. DIGITAL SIGNAL PROCESSING, 2014, 25 : 1 - 16
  • [4] Nested Sequential Monte Carlo Methods
    Naesseth, Christian A.
    Lindsten, Fredrik
    Schon, Thomas B.
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1292 - 1301
  • [5] An Overview of Quantum Monte Carlo Methods
    Ceperley, David M.
    [J]. THEORETICAL AND COMPUTATIONAL METHODS IN MINERAL PHYSICS: GEOPHYSICAL APPLICATIONS, 2010, 71 : 129 - 135
  • [6] Current advances in Monte Carlo methods
    Panagiotopoulos, AZ
    [J]. FLUID PHASE EQUILIBRIA, 1996, 116 (1-2) : 257 - 266
  • [7] Recent advances in determinant quantum Monte Carlo
    Chang, Chia-Chen
    Gogolenko, Sergiy
    Perez, Jeffrey
    Bai, Zhaojun
    Scalettar, Richard T.
    [J]. PHILOSOPHICAL MAGAZINE, 2015, 95 (12) : 1260 - 1281
  • [8] Sequential Monte Carlo methods for diffusion processes
    Jasra, Ajay
    Doucet, Arnaud
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2112): : 3709 - 3727
  • [9] Sequential Monte Carlo methods for navigation systems
    Sotak, Milos
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (06): : 249 - 252
  • [10] Properties of marginal sequential Monte Carlo methods
    Crucinio, Francesca R.
    Johansen, Adam M.
    [J]. STATISTICS & PROBABILITY LETTERS, 2023, 203