Making the case for reforming the I/O software stack of extreme-scale systems

被引:5
|
作者
Isaila, Florin [1 ]
Garcia, Javier [2 ]
Carretero, Jesus [2 ]
Ross, Rob [1 ]
Kimpe, Dries [1 ]
机构
[1] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Univ Carlos III, Getafe, Spain
关键词
Storage; I/O software stack; Data locality; Energy efficiency; Resilience;
D O I
10.1016/j.advengsoft.2016.07.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The ever-increasing data needs of scientific and engineering applications require novel approaches to managing and exploring huge amounts of information in order to advance scientific discovery. In order to achieve this goal, one of the main priorities of the international scientific community is addressing the challenges of performing scientific computing on exascale machines within the next decade. Exascale platforms likely will be characterized by a three to four orders of magnitude increase in concurrency, a substantially larger storage capacity, and a deepening of the storage hierarchy. The current development model of independently applying optimizations at each layer of the system I/O software stack will not scale to the new levels of concurrency, storage hierarchy, and capacity. In this article we discuss the current development model for the I/O software stack of high-performance computing platforms. We identify the challenges of improving scalability, performance, energy efficiency, and resilience of the I/O software stack, while accessing a deepening hierarchy of volatile and nonvolatile storage. We advocate for radical new approaches to reforming the I/O software stack in order to advance toward exascale. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:26 / 31
页数:6
相关论文
共 50 条
  • [41] GraphSys-2024: 2nd Workshop on Serverless, Extreme-Scale, and Sustainable Graph Processing Systems
    Iosup, Alexandru
    Prodan, Radu
    Varbanescu, Ana-Lucia
    COMPANION OF THE 15TH ACM/SPEC INTERNATIONAL CONFERENCE ON PERFORMANCE ENGINEERING, ICPE COMPANION 2024, 2024, : 95 - 96
  • [42] Towards extreme-scale simulations with next-generation Trilinos: a low Mach fluid application case study
    Lin, Paul
    Bettencourt, Matthew
    Domino, Stefan
    Fisher, Travis
    Hoemmen, Mark
    Hu, Jonathan
    Phipps, Eric
    Prokopenko, Andrey
    Rajamanickam, Sivasankaran
    Siefert, Christopher
    Cyr, Eric
    Kennon, Stephen
    PROCEEDINGS OF 2014 IEEE INTERNATIONAL PARALLEL & DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2014, : 1485 - 1494
  • [43] Big data and extreme-scale computing: Pathways to Convergence-Toward a shaping strategy for a future software and data ecosystem for scientific inquiry
    Asch, M.
    Moore, T.
    Badia, R.
    Beck, M.
    Beckman, P.
    Bidot, T.
    Bodin, F.
    Cappello, F.
    Choudhary, A.
    de Supinski, B.
    Deelman, E.
    Dongarra, J.
    Dubey, A.
    Fox, G.
    Fu, H.
    Girona, S.
    Gropp, W.
    Heroux, M.
    Ishikawa, Y.
    Keahey, K.
    Keyes, D.
    Kramer, W.
    Lavignon, J-F
    Lu, Y.
    Matsuoka, S.
    Mohr, B.
    Reed, D.
    Requena, S.
    Saltz, J.
    Schulthess, T.
    Stevens, R.
    Swany, M.
    Szalay, A.
    Tang, W.
    Varoquaux, G.
    Vilotte, J-P
    Wisniewski, R.
    Xu, Z.
    Zacharov, I.
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2018, 32 (04): : 435 - 479
  • [44] POSTER: Layrub: Layer-centric GPU memory reuse and data migration in extreme-scale deep learning systems
    Liu, Bo
    Jiang, Wenbin
    Jin, Hai
    Shi, Xuanhua
    Ma, Yang
    ACM SIGPLAN NOTICES, 2018, 53 (01) : 405 - 406
  • [45] SSDStreamer: Specializing I/O Stack for Large-Scale Machine Learning
    Bae, Jonghyun
    Jang, Hakbeom
    Gong, Jeonghun
    Jin, Wenjing
    Kim, Shine
    Jang, Jaeyoung
    Ham, Tae Jun
    Jeong, Jinkyu
    Lee, Jae W.
    IEEE MICRO, 2019, 39 (05) : 73 - 81
  • [46] Improving OpenStack Swift interaction with the I/O Stack to enable Software Defined Storage
    Nou, Ramon
    Miranda, Alberto
    Siquier, Marc
    Cortes, Toni
    2017 IEEE 7TH INTERNATIONAL SYMPOSIUM ON CLOUD AND SERVICE COMPUTING (SC2 2017), 2017, : 63 - 70
  • [47] PLEXUS: A Pattern-Oriented Runtime System Architecture for Resilient Extreme-Scale High-Performance Computing Systems
    Hukerikar, Saurabh
    Engelmann, Christian
    2020 IEEE 25TH PACIFIC RIM INTERNATIONAL SYMPOSIUM ON DEPENDABLE COMPUTING (PRDC 2020), 2020, : 31 - 39
  • [48] Predicting for I/O stack optimizations on cyber-physical systems
    Zhang, Yangmei
    Shen, Fanfan
    Li, Mengquan
    Wu, Chao
    MICROPROCESSORS AND MICROSYSTEMS, 2023, 101
  • [49] FusionFS: Toward Supporting Data-Intensive Scientific Applications on Extreme-Scale High-Performance Computing Systems
    Zhao, Dongfang
    Zhang, Zhao
    Zhou, Xiaobing
    Li, Tonglin
    Wang, Ke
    Kimpe, Dries
    Carns, Philip
    Ross, Robert
    Raicu, Ioan
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014, : 61 - 70
  • [50] POSTER: Layrub: Layer-centric GPU memory reuse and data migration in extreme-scale deep learning systems
    Liu B.
    Jiang W.
    Jin H.
    Shi X.
    Ma Y.
    2018, Association for Computing Machinery, 2 Penn Plaza, Suite 701, New York, NY 10121-0701, United States (53): : 405 - 406