Polarization distribution and theoretical fitting of direct methanol fuel cell

被引:9
|
作者
Wang, Shubo [1 ]
Jing, Shan [1 ]
Mao, Zhiming [2 ]
Xie, Xiaofeng [1 ]
机构
[1] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
[2] Beijing Sino Hydrogen Technol Co Ltd, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Direct methanol fuel cell; Polarization distribution; Theoretical fitting; Membrane electrode assembly; Catalyst coated membrane; DMFC; MODEL; PERFORMANCE; TRANSPORT;
D O I
10.1016/j.ijhydene.2016.05.116
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Membrane Electrode Assembly (MEA) is a key component of direct methanol fuel cell. In order to improve the power generation performance of the MEA, it is necessary to reduce polarization losses. The cathode and anode activation polarization, proton exchange membrane ohmic polarization and gas diffusion layer mass transfer polarization were studied under different methanol concentration and operation temperature conditions respectively. A theoretical study of the various polarization fitting and distribution losses was conducted. The polarization distribution results indicated that the activation polarization of cathode and anode are the main over potential contribution and accounted for more than 80%. The ohmic resistance accounted for approximately 10%. By studying the distribution of polarization loss, we got a variety of distribution of polarization losses under different operating conditions, these results provide a theoretical basis for efficient ways to optimize the MEA. (C) 2016 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.
引用
收藏
页码:16247 / 16253
页数:7
相关论文
共 50 条
  • [21] Test on the degradation of direct methanol fuel cell
    Chen, WM
    Sun, GQ
    Guo, JS
    Zhao, XS
    Yan, SY
    Tian, J
    Tang, SH
    Zhou, ZH
    Xin, Q
    ELECTROCHIMICA ACTA, 2006, 51 (12) : 2391 - 2399
  • [22] Direct Methanol Fuel Cell Materials Characterization
    Monroe, D. N.
    Richard, D. J.
    Martin, A. D.
    Leonard, D. N.
    Russell, P. E.
    MICROSCOPY AND MICROANALYSIS, 2009, 15 : 1432 - 1433
  • [23] Bifunctional activation of a direct methanol fuel cell
    Kulikovsky, A. A.
    Schmitz, H.
    Wippermann, K.
    Mergel, J.
    Fricke, B.
    Sanders, T.
    Sauer, D. U.
    JOURNAL OF POWER SOURCES, 2007, 173 (01) : 420 - 423
  • [24] Model of a direct methanol fuel cell stack
    Kulikovsky, A. A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (09) : A1672 - A1677
  • [25] Design and Utilization of a Direct Methanol Fuel Cell
    Ahmed, Aser Alaa
    Al Labadidi, Malik
    Hamada, Ahmed T.
    Orhan, Mehmet Fatih
    MEMBRANES, 2022, 12 (12)
  • [26] Progress in research on direct methanol fuel cell
    Tian, Lipeng
    Li, Weishan
    Huagong Xiandai/Modern Chemical Industry, 1998, 18 (05): : 14 - 16
  • [27] Active direct methanol fuel cell: An overview
    Alias, M. S.
    Kamarudin, S. K.
    Zainoodin, A. M.
    Masdar, M. S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (38) : 19620 - 19641
  • [28] Process engineering of the direct methanol fuel cell
    Dohle, H
    Divisek, J
    Jung, R
    JOURNAL OF POWER SOURCES, 2000, 86 (1-2) : 469 - 477
  • [29] Selectivity of Direct Methanol Fuel Cell Membranes
    Arico, Antonino S.
    Sebastian, David
    Schuster, Michael
    Bauer, Bernd
    D'Urso, Claudia
    Lufrano, Francesco
    Baglio, Vincenzo
    MEMBRANES, 2015, 5 (04): : 793 - 809
  • [30] Dynamic characteristics of a direct methanol fuel cell
    Wang, Maohai
    Guo, Hang
    Ma, Chongfang
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2006, 3 (02): : 202 - 207