A counterexample to a Penrose inequality conjectured by Gibbons

被引:3
|
作者
Dain, Sergio [1 ]
Weinstein, Gilbert [2 ]
Yamada, Sumio [3 ]
机构
[1] Univ Nacl Cordoba, Fac Matemat Astron & Fis, Inst Fis Enrique Gaviola, FaMAF,IFEG,CONICET, RA-5000 Cordoba, Argentina
[2] Monash Univ, Sch Math, Melbourne, Vic 3004, Australia
[3] Tohoku Univ, Math Inst, Tohoku, Japan
关键词
PROOF; ENERGY;
D O I
10.1088/0264-9381/28/8/085015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that the Brill-Lindquist initial data provide a counterexample to a Riemannian Penrose inequality with charge conjectured by Gibbons. The observation illustrates a sub-additive characteristic of the area radii for the individual connected components of an outermost horizon as a lower bound of the ADM mass.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A COUNTEREXAMPLE TO A CONJECTURED HERMITIAN MATRIX INEQUALITY
    FURUTA, T
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1987, 94 (03): : 271 - 272
  • [2] A Gibbons–Penrose Inequality for Surfaces in Schwarzschild Spacetime
    Simon Brendle
    Mu-Tao Wang
    [J]. Communications in Mathematical Physics, 2014, 330 : 33 - 43
  • [3] A Gibbons-Penrose Inequality for Surfaces in Schwarzschild Spacetime
    Brendle, Simon
    Wang, Mu-Tao
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 330 (01) : 33 - 43
  • [4] Counterexample to the conjectured Planckian bound on transport
    Poniatowski, Nicholas R.
    Sarkar, Tarapada
    Lobo, Ricardo P. S. M.
    Das Sarma, Sankar
    Greene, Richard L.
    [J]. PHYSICAL REVIEW B, 2021, 104 (23)
  • [5] A CONJECTURED MATRIX INEQUALITY
    JAGERS, AA
    BOEHM, W
    GROSJEAN, CC
    MATHIAS, R
    OZBAN, AY
    RENARDY, M
    SEZGINER, RS
    SO, W
    WATSON, BA
    XU, JC
    [J]. SIAM REVIEW, 1990, 32 (03) : 483 - 484
  • [6] A proof of a conjectured determinantal inequality
    Ghabries, Mohammad M.
    Abbas, Hassane
    Mourad, Bassam
    Assi, Abdallah
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 605 : 21 - 28
  • [7] A counterexample to a recent version of the Penrose conjecture
    Carrasco, Alberto
    Mars, Marc
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (06)
  • [8] ON AN INEQUALITY CONJECTURED BY BESENYEI AND PETZ
    Ileri, Ayca
    Demir, Selcuk
    [J]. OPERATORS AND MATRICES, 2022, 16 (02): : 299 - 307
  • [9] On the Penrose inequality
    Frauendiener, J
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (10) : art. no. - 101101
  • [10] On an inequality conjectured by TJ Lyons
    Love, ER
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 1998, 2 (03): : 229 - 233