A proof of a conjectured determinantal inequality

被引:3
|
作者
Ghabries, Mohammad M. [1 ,2 ]
Abbas, Hassane [3 ]
Mourad, Bassam [3 ]
Assi, Abdallah [1 ]
机构
[1] LAREMA, Fac Sci, Dept Math, Angers, France
[2] Lebanese Univ, Fac Sci, Dept Math, KALMA, Beirut, Lebanon
[3] Lebanese Univ, Fac Sci, Dept Math, Beirut, Lebanon
关键词
Determinantal inequalities; Hermitian matrix; Positive semi-definite matrix; Log-majorization; Eigenvalues;
D O I
10.1016/j.laa.2020.07.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to prove the following determinantal inequality: det(A(k) + vertical bar B-s/2 A(s/2)vertical bar(2t/s)) <= (A(k) + A(t) B-t) <= det (A(k) + + vertical bar A(s/2) B-s/2 vertical bar(2t/s)) for any positive semi-definite matrices A and B, and for all 0 <= t <= s <= k. It generalizes several known determinantal inequalities, and one main consequence of it confirms Lin's conjecture which states that for positive semi-definite matrices A and B, det(A(2) + A(t) B-t) <= det(A(2) + vertical bar AB vertical bar(t)) for 0 <= t <= 2. We conclude with another related determinantal inequality. (C) 2020 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:21 / 28
页数:8
相关论文
共 50 条
  • [1] A proof of Thompson'S determinantal inequality
    Lin, Minghua
    Sra, Suvrit
    MATHEMATICAL NOTES, 2016, 99 (1-2) : 164 - 165
  • [2] A proof of Thompson’S determinantal inequality
    Minghua Lin
    Suvrit Sra
    Mathematical Notes, 2016, 99 : 164 - 165
  • [3] 93.09 A proof of an inequality conjectured by J. Chen
    Wang, Juan
    Zhang, Ying
    MATHEMATICAL GAZETTE, 2009, 93 (526): : 105 - 108
  • [4] A CONJECTURED MINIMUM DEGREE DETERMINANTAL POLYNOMIAL
    GIBSON, PM
    SIAM REVIEW, 1987, 29 (04) : 634 - 635
  • [5] Proof of a Conjectured 0-Renyi Entropy Inequality With Applications to Multipartite Entanglement
    Song, Zhiwei
    Chen, Lin
    Sun, Yize
    Hu, Mengyao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (04) : 2385 - 2399
  • [6] A CONJECTURED MATRIX INEQUALITY
    JAGERS, AA
    BOEHM, W
    GROSJEAN, CC
    MATHIAS, R
    OZBAN, AY
    RENARDY, M
    SEZGINER, RS
    SO, W
    WATSON, BA
    XU, JC
    SIAM REVIEW, 1990, 32 (03) : 483 - 484
  • [7] A determinantal inequality
    Wasbeck, T
    de Berge, J
    Kleiber, C
    Neudecker, H
    ECONOMETRIC THEORY, 2002, 18 (02) : 542 - 543
  • [8] PROOF OF MASSEY CONJECTURED ALGORITHM
    DING, CS
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 330 : 345 - 349
  • [9] ON AN INEQUALITY CONJECTURED BY BESENYEI AND PETZ
    Ileri, Ayca
    Demir, Selcuk
    OPERATORS AND MATRICES, 2022, 16 (02): : 299 - 307
  • [10] On an inequality conjectured by TJ Lyons
    Love, ER
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 1998, 2 (03): : 229 - 233