Generating More Kawazoe-Takahashi Genus 2 Pairing-Friendly Hyperelliptic Curves

被引:0
|
作者
Kachisa, Ezekiel J. [1 ]
机构
[1] Dublin City Univ, Sch Comp, Dublin 9, Ireland
来源
关键词
pairing-friendly curves; hyperelliptic curves; ELLIPTIC-CURVES; ORDINARY JACOBIANS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Constructing pairing-friendly hyperelliptic curves with small rho-values is one of challenges for practicability of pairing-friendly hyperelliptic curves. In this paper, we describe a method that extends the Kawazoe-Takahashi method of generating families of genus 2 ordinary pairing-friendly hyperelliptic curves by parameterizing the parameters as polynomials. With this approach we construct genus 2 ordinary pairing-friendly hyperelliptic curves with 2 < rho <= 3.
引用
收藏
页码:312 / 326
页数:15
相关论文
共 50 条
  • [31] CONSTRUCTING PAIRING-FRIENDLY CURVES WITH VARIABLE CM DISCRIMINANT
    Lee, Hyang-Sook
    Park, Cheol-Min
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (01) : 75 - 88
  • [32] Optimal pairing computation over families of pairing-friendly elliptic curves
    Eom, Soo-Kyung
    Lee, Hyang-Sook
    Park, Cheol-Min
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2011, 22 (04) : 235 - 248
  • [33] Tate pairing computation on the divisors of hyperelliptic curves of genus 2
    Lee, Eunjeong
    Lee, Yoonjin
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (04) : 1057 - 1073
  • [34] ON THE NUMBER OF ISOGENY CLASSES OF PAIRING-FRIENDLY ELLIPTIC CURVES AND STATISTICS OF MNT CURVES
    Jimenez Urroz, Jorge
    Luca, Florian
    Shparlinski, Igor E.
    MATHEMATICS OF COMPUTATION, 2012, 81 (278) : 1093 - 1110
  • [35] Fast hashing to G2 on pairing-friendly curves with the lack of twists
    Dai, Yu
    Zhang, Fangguo
    Zhao, Chang-An
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 91
  • [36] An Algorithm to Generate Special Type of Pairing-Friendly Elliptic Curves
    Zhang, Meng
    Xu, Maozhi
    2017 IEEE 9TH INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN), 2017, : 123 - 126
  • [37] On Constructing Families of Pairing-Friendly Elliptic Curves with Variable Discriminant
    Drylo, Robert
    PROGRESS IN CRYPTOLOGY - INDOCRYPT 2011, 2011, 7107 : 310 - 319
  • [38] Constructing pairing-friendly elliptic curves with embedding degree 10
    Freeman, David
    ALGORITHMIC NUMBER THEORY, PROCEEDINGS, 2006, 4076 : 452 - 465
  • [39] Revisiting Pairing-Friendly Curves with Embedding Degrees 10 and 14
    Dai, Yu
    He, Debiao
    Peng, Cong
    Yang, Zhijian
    Zhao, Chang-an
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2024, PT II, 2025, 15485 : 454 - 485
  • [40] Generating pairing-friendly elliptic curve parameters using sparse families
    Fotiadis, Georgios
    Konstantinou, Elisavet
    JOURNAL OF MATHEMATICAL CRYPTOLOGY, 2018, 12 (02) : 83 - 99