In order to theoretical and application research in depth on synthetic aperture technology, an optical imaging system was designed. This paper describes the optical system with emphasis on the primary mirror adjusting structure, system stiffness, and temperature effect. Using high precision adjusting structure, the primary mirror is synthesized by three segment mirrors. Angle adjusting structure of each segment mirror has 2 DOF, and is realized by flexible hinge, which not only ensures the simplicity, but the stability and precision as well. A virtual prototype of the angle adjusting structure, which was built by ADAMS and ANSYS, and was simulated, results show that the flexible hinge is reasonable. System stiffness is very important to high precision optical system, especially the flexible hinge, which would reduce system stiffness. Frequency analysis indicates that the primary mirror's frequency is 235.72 Hz, which is stable. The effect of environment temperature fluctuation on the system was studied. Suitable material can reduce thermal stress effect on the mirror. Temperature compensation is also used to solve position changes of mirrors. Prototype test shows that the system is reasonable, which successfully satisfies the requirement of the synthetic aperture technology.