SUPRATHERMAL ELECTRONS AT SATURN'S BOW SHOCK

被引:15
|
作者
Masters, A. [1 ]
Sulaiman, A. H. [2 ]
Sergis, N. [3 ]
Stawarz, L. [4 ]
Fujimoto, M. [5 ,6 ]
Coates, A. J. [7 ,8 ]
Dougherty, M. K. [1 ]
机构
[1] Imperial Coll London, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England
[2] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[3] Acad Athens, Off Space Res & Technol, Soranou Efesiou 4, Athens 11527, Greece
[4] Jagiellonian Univ, Astron Observ, Ul Orla 171, PL-30244 Krakow, Poland
[5] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan
[6] Tokyo Inst Technol, Earth Life Sci Inst, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan
[7] Univ Coll London, Dept Space & Climate Phys, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England
[8] UCL Birkbeck, Ctr Planetary Sci, Gower St, London WC1E 6BT, England
来源
ASTROPHYSICAL JOURNAL | 2016年 / 826卷 / 01期
关键词
acceleration of particles; methods: data analysis; methods: observational; plasmas; shock waves; solar wind; PARTICLE-ACCELERATION; INJECTION; UPSTREAM;
D O I
10.3847/0004-637X/826/1/48
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini. The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with the theory in which the "injection" of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to similar to 1 MeV).
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Variability in Saturn's bow shock and magnetopause from Pioneer and Voyager: Probabilistic predictions and initial observations by Cassini
    Hendricks, S
    Neubauer, FM
    Dougherty, MK
    Achilleos, N
    Russell, CT
    GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (20) : 1 - 4
  • [42] CORRELATED OBSERVATIONS OF ELECTRONS AND MAGNETIC FIELDS AT EARTHS BOW SHOCK
    NEUGEBAUER, M
    RUSSELL, CT
    OLSON, JV
    JOURNAL OF GEOPHYSICAL RESEARCH, 1971, 76 (19): : 4366 - +
  • [43] COSTEP/SOHO observations of energetic electrons far upstream of the Earth's bow-shock
    Klassen, A.
    Gomez-Herrero, R.
    Boehm, E.
    Mueller-Mellin, R.
    Heber, B.
    Wimmer-Schweingruber, R.
    ANNALES GEOPHYSICAE, 2008, 26 (04) : 905 - 912
  • [44] DIFFUSION AND CONVECTION OF ENERGETIC ELECTRONS BEHIND EARTHS BOW SHOCK
    JOKIPII, JR
    JOURNAL OF GEOPHYSICAL RESEARCH, 1966, 71 (13): : 3173 - &
  • [45] ENERGY-SPECTRA OF ELECTRONS AND PROTONS ACCELERATED IN BOW SHOCK
    ANDERSON, KA
    LIN, RP
    POTTER, D
    LIN, SC
    PARKS, GK
    MARTEL, F
    REME, H
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1978, 59 (04): : 366 - 366
  • [46] HEATING OF THERMAL IONOSPHERIC ELECTRONS BY SUPRATHERMAL ELECTRONS
    STAMNES, K
    REES, MH
    GEOPHYSICAL RESEARCH LETTERS, 1983, 10 (04) : 309 - 312
  • [47] Suprathermal electron penetration into the inner magnetosphere of Saturn
    Thomsen, M. F.
    Coates, A. J.
    Roussos, E.
    Wilson, R. J.
    Hansen, K. C.
    Lewis, G. R.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (06) : 5436 - 5448
  • [48] Langmuir Turbulence and Suprathermal Electrons
    P. H. Yoon
    L. F. Ziebell
    R. Gaelzer
    R. P. Lin
    L. Wang
    Space Science Reviews, 2012, 173 : 459 - 489
  • [49] Meridional maps of Saturn's thermal electrons
    Carbary, J. F.
    Rymer, A. M.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (03) : 1721 - 1733
  • [50] ENERGIZED AURORAL SUPRATHERMAL ELECTRONS
    SOJKA, JJ
    JOHNSTONE, AD
    GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1977, 49 (01): : 295 - 295