SUPRATHERMAL ELECTRONS AT SATURN'S BOW SHOCK

被引:15
|
作者
Masters, A. [1 ]
Sulaiman, A. H. [2 ]
Sergis, N. [3 ]
Stawarz, L. [4 ]
Fujimoto, M. [5 ,6 ]
Coates, A. J. [7 ,8 ]
Dougherty, M. K. [1 ]
机构
[1] Imperial Coll London, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England
[2] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[3] Acad Athens, Off Space Res & Technol, Soranou Efesiou 4, Athens 11527, Greece
[4] Jagiellonian Univ, Astron Observ, Ul Orla 171, PL-30244 Krakow, Poland
[5] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan
[6] Tokyo Inst Technol, Earth Life Sci Inst, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan
[7] Univ Coll London, Dept Space & Climate Phys, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England
[8] UCL Birkbeck, Ctr Planetary Sci, Gower St, London WC1E 6BT, England
来源
ASTROPHYSICAL JOURNAL | 2016年 / 826卷 / 01期
关键词
acceleration of particles; methods: data analysis; methods: observational; plasmas; shock waves; solar wind; PARTICLE-ACCELERATION; INJECTION; UPSTREAM;
D O I
10.3847/0004-637X/826/1/48
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini. The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with the theory in which the "injection" of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to similar to 1 MeV).
引用
收藏
页数:7
相关论文
共 50 条
  • [1] SUPRATHERMAL ELECTRONS AT EARTHS BOW SHOCK
    GOSLING, JT
    THOMSEN, MF
    BAME, SJ
    RUSSELL, CT
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1989, 94 (A8): : 10011 - 10025
  • [2] Acceleration of Solar Wind Suprathermal Electrons at the Earth's Bow Shock
    Liu, Zixuan
    Wang, Linghua
    Guo, Xinnian
    ASTROPHYSICAL JOURNAL, 2022, 935 (01):
  • [3] Betatron Acceleration of Suprathermal Electrons Upstream of the Martian Bow Shock
    Wang, Z.
    Fu, H. S.
    Guo, Z. Z.
    Liu, Y. Y.
    Xu, Y.
    ASTROPHYSICAL JOURNAL, 2024, 960 (01):
  • [4] Enhanced whistler instability produced by suprathermal electrons upstream of the Earth's bow shock
    Mace, RL
    SOLAR WIND NINE, 1999, 471 : 479 - 482
  • [5] Electron heating at Saturn's bow shock
    Masters, A.
    Schwartz, S. J.
    Henley, E. M.
    Thomsen, M. F.
    Zieger, B.
    Coates, A. J.
    Achilleos, N.
    Mitchell, J.
    Hansen, K. C.
    Dougherty, M. K.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
  • [6] Hot flow anomalies at Saturn's bow shock
    Masters, A.
    McAndrews, H. J.
    Steinberg, J. T.
    Thomsen, M. F.
    Arridge, C. S.
    Dougherty, M. K.
    Billingham, L.
    Schwartz, S. J.
    Sergis, N.
    Hospodarsky, G. B.
    Coates, A. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2009, 114
  • [7] Magnetospheric period oscillations of Saturn's bow shock
    Clarke, K. E.
    Andrews, D. J.
    Coates, A. J.
    Cowley, S. W. H.
    Masters, A.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
  • [8] SUPRATHERMAL IONS OBSERVED UPSTREAM OF THE VENUS BOW SHOCK
    MOORE, KR
    MCCOMAS, DJ
    RUSSELL, CT
    MIHALOV, JD
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1989, 94 (A4): : 3743 - 3748
  • [9] Probing the Earth's bow shock with upstream electrons
    Larson, DE
    Lin, RP
    McFadden, JP
    Ergun, RE
    Carlson, CW
    Anderson, KA
    Phan, TD
    McCarthy, MP
    Parks, GK
    Reme, H
    Bosqued, JM
    dUston, C
    Sanderson, TR
    Wenzel, KP
    Lepping, RP
    GEOPHYSICAL RESEARCH LETTERS, 1996, 23 (17) : 2203 - 2206
  • [10] An empirical model of Saturn's bow shock: Cassini observations of shock location and shape
    Masters, A.
    Achilleos, N.
    Dougherty, M. K.
    Slavin, J. A.
    Hospodarsky, G. B.
    Arridge, C. S.
    Coates, A. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2008, 113 (A10)