Synthesis and catalytic performance of Cu1Mn0.5Ti0.5Ox mixed oxide as low-temperature NH3-SCR catalyst with enhanced SO2 resistance

被引:153
|
作者
Yan, Qinghua [1 ,2 ]
Chen, Sining [1 ]
Zhang, Cheng [1 ]
Wang, Qiang [1 ]
Louis, Benoit [2 ]
机构
[1] Beijing Forestry Univ, Coll Environm Sci & Engn, 35 Qinghua East Rd, Beijing 100083, Peoples R China
[2] Univ Strasbourg, Lab Synth React Organ & Catalyse, Inst Chim, UMR 7177, 1 Rue Blaise Pascal, F-67000 Strasbourg, France
基金
中国国家自然科学基金;
关键词
Selective catalytic reduction; Mn-based catalyst; Layered double hydroxides; SO2; resistance; Regenerability; LAYERED DOUBLE HYDROXIDES; NO REDUCTION; ACID SITES; CARBON NANOTUBES; CO2; ADSORPTION; NH3; SCR; MN; MECHANISM; FE;
D O I
10.1016/j.apcatb.2018.07.035
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new type of low-temperature NH3-SCR catalyst with a chemical composition of CuwMnyTi1-yOx was prepared from layered double hydroxides precursors for the first time. The purpose of this novel design is to improve the De-NOx efficiency and SO2 resistance of Mn-based catalysts. The Cu1Mn0.5Ti0.5Ox catalyst achieved a NOx conversion as high as 90% at 200 degrees C, which is much higher than that of the control catalysts Cu-Mn/TiO2 (86.1%) and Mn/TiO2 (80.7%). The properties of catalysts were characterized in detail using a series of physicochemical techniques including XRD, BET, FOR, SEM, TEM, H-2-TPR, NH3-TPD, TGA, and XPS analyses. The excellent catalytic performance of Cu1Mn0.5Ti0.5Ox catalyst can be associated with its higher specific surface area and surface acidity, and more active MnO2 and CuO species. Besides, when copper oxide is introduced, the catalysts showed significant resistance to 100 ppm SO2 and 5% H2O. Finally, the poisoning mechanism and the regenerability of Cu1Mn0.5Ti0.5Ox catalyst was proposed. In short, the newly designed Cu1Mn0.5Ti0.5Ox catalyst was found to have higher catalytic activity and excellent SO2 and H2O resistance compared to the control catalysts of Cu-Mn/TiO2 and Mn/TiO2.
引用
收藏
页码:236 / 247
页数:12
相关论文
共 50 条
  • [31] Promoting effect of Si on MnOx catalysts for low-temperature NH3-SCR of NO: Enhanced N2 selectivity and SO2 resistance
    Liang, Ya
    Liu, Weizao
    Wu, Hongli
    Liu, Qingcai
    Yao, Lu
    FUEL, 2024, 355
  • [32] Promotion of Phosphorus on Carbon Supports for MnOx-CeO2 Catalysts in Low-Temperature NH3-SCR with Enhanced SO2 Resistance
    Wang, He
    Yang, Minghe
    Jin, Shuangling
    Zhang, Rui
    Li, Weifeng
    Wang, Yan
    Huo, Wanying
    Wang, Xiaorui
    Qiao, Wenming
    Ling, Licheng
    Jin, Minglin
    CHEMISTRYSELECT, 2021, 6 (15): : 3642 - 3655
  • [33] The Latest Research Progress of NH3-SCR in the SO2 Resistance of the Catalyst in Low Temperatures for Selective Catalytic Reduction of NOx
    Liu, Caixia
    Wang, Huijun
    Zhang, Ziyin
    Liu, Qingling
    CATALYSTS, 2020, 10 (09) : 1 - 18
  • [34] Effect of calcination temperature on low-temperature NH3-SCR activity and the resistance of SO2 with or without H2O over Fe-Mn-Zr catalyst
    Fang, Ningjie
    Guo, Jiaxiu
    Shu, Song
    Luo, Hongdi
    Li, Jianjun
    Chu, Yinghao
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2018, 93 : 277 - 288
  • [35] Improving the Performance of Gd Addition on Catalytic Activity and SO2 Resistance over MnOx/ZSM-5 Catalysts for Low-Temperature NH3-SCR
    Guan, Jinkun
    Zhou, Lusha
    Li, Weiquan
    Hu, Die
    Wen, Jie
    Huang, Bichun
    CATALYSTS, 2021, 11 (03) : 1 - 22
  • [36] Low-temperature NH3-SCR performance of a novel Chlorella@Mn composite denitrification catalyst
    Liu, Hengheng
    Gao, Fengyu
    Ko, Songjin
    Luo, Ning
    Tang, Xiaolong
    Duan, Erhong
    Yi, Honghong
    Zhou, Yuansong
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2024, 137 : 271 - 286
  • [37] Denitrification performance and sulfur resistance mechanism of Sm–Mn catalyst for low temperature NH3-SCR
    Xie Junlin
    Ye Yanli
    Li Qinglei
    Kang Tianhong
    Hou Sensheng
    Jin Qiqi
    He Feng
    Fang De
    Frontiers of Chemical Science and Engineering, 2023, 17 (05) : 617 - 633
  • [38] Enhanced low-temperature NH3-SCR performance of Ce/TiO2 modified by Ho catalyst
    Zhang, Ting-ting
    Yan, Li-min
    ROYAL SOCIETY OPEN SCIENCE, 2019, 6 (03):
  • [39] Synthesis of low-temperature NH3-SCR catalysts for MnOx with high SO2 resistance using redox-precipitation method with mixed manganese sources
    Pei, Zhenzhao
    Zhao, Haiyang
    Wang, Haipeng
    Xu, Jiaqi
    Fu, Zhuyue
    Yu, Guangxi
    Wu, Hao
    APPLIED SURFACE SCIENCE, 2025, 680
  • [40] A review of Mn-based catalysts for low-temperature NH3-SCR: NOx removal and H2O/SO2 resistance
    Xu, Guiying
    Guo, Xiaolong
    Cheng, Xingxing
    Yu, Jian
    Fang, Baizeng
    NANOSCALE, 2021, 13 (15) : 7052 - 7080