Polarizable force field development for lipids and their efficient applications in membrane proteins

被引:7
|
作者
Chu, Huiying [1 ]
Cao, Liaoran [1 ]
Peng, Xiangda [1 ]
Li, Guohui [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Lab Mol Modeling & Design, State Key Lab Mol React Dynam, Dalian, Peoples R China
关键词
MOLECULAR-DYNAMICS SIMULATIONS; COARSE-GRAINED MODEL; GRAMICIDIN-A CHANNEL; MONOVALENT IONS LI+; FREE-ENERGY PROFILE; X-RAY-SCATTERING; CHARGE EQUILIBRATION; FLUCTUATING CHARGE; ATOMIC MULTIPOLE; WATER INTERFACE;
D O I
10.1002/wcms.1312
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polarizable force fields have been developed due to the intrinsic problem of additive force fields in modeling electrostatic interactions. Because of the capability to accurately describe the behavior of systems with significant changes in their electrostatic environments, polarizable force fields might be a decent tool to study membrane-related systems, such as lipid bilayers, though not so much progresses have been made. In this overview article we described the developments of a variety of polarizable force fields, including the corresponding theories, benchmark examples, and more specifically we were focused on the applications on lipid membranes. (C) 2017 John Wiley & Sons, Ltd
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Development of an anisotropic polarizable model for the all-atom AMOEBA force field
    Yang, Yanyan
    Jin, Qianqian
    Yin, Shiwei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (35) : 22900 - 22911
  • [42] Development of a Polarizable Force Field Using Multiple Fluctuating Charges per Atom
    Zhao, Dong-Xia
    Liu, Cui
    Wang, Fang-Fang
    Yu, Chun-Yang
    Gong, Li-Dong
    Liu, Shu-Bin
    Yang, Zhong-Zhi
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (03) : 795 - 804
  • [43] Development of a polarizable force field for proteins via ab initio quantum chemistry:: First generation model and gas phase tests
    Kaminski, GA
    Stern, HA
    Berne, BJ
    Friesner, RA
    Cao, YXX
    Murphy, RB
    Zhou, RH
    Halgren, TA
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2002, 23 (16) : 1515 - 1531
  • [44] Transferable, Polarizable Force Field for Ionic Liquids
    Goloviznina, Kateryna
    Canongia Lopes, Jose N.
    Gomes, Margarida Costa
    Padua, Agilio A. H.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (11) : 5858 - 5871
  • [45] MEMBRANE LIPIDS AND CONFORMATIONS OF MEMBRANE PROTEINS
    WALLACH, DFH
    JOURNAL OF GENERAL PHYSIOLOGY, 1969, 54 (1P2): : S3 - +
  • [46] PCMRESP: A Method for Polarizable Force Field Parameter Development and Transferability of the Polarizable Gaussian Multipole Models Across Multiple Solvents
    Duan, Yong
    Niu, Taoyu
    Wang, Junmei
    Cieplak, Piotr
    Luo, Ray
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (07) : 2820 - 2829
  • [47] DRF90: a polarizable force field
    Swart, M.
    van Duijnen, P. Th.
    MOLECULAR SIMULATION, 2006, 32 (06) : 471 - 484
  • [48] Current Status of the AMOEBA Polarizable Force Field
    Ponder, Jay W.
    Wu, Chuanjie
    Ren, Pengyu
    Pande, Vijay S.
    Chodera, John D.
    Schnieders, Michael J.
    Haque, Imran
    Mobley, David L.
    Lambrecht, Daniel S.
    DiStasio, Robert A., Jr.
    Head-Gordon, Martin
    Clark, Gary N. I.
    Johnson, Margaret E.
    Head-Gordon, Teresa
    JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (08): : 2549 - 2564
  • [49] Optimization of the Drude polarizable protein force field
    Lin, Fang Yu
    Mackerell, Alexander
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [50] LEWIS: A reactive (and incidentally polarizable) force field
    Kale, Seyit
    Herzfeld, Judith
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243