Investigating effect of climate change on drought propagation from meteorological to hydrological drought using multi-model ensemble projections

被引:89
|
作者
Jehanzaib, Muhammad [1 ]
Sattar, Muhammad Nouman [1 ,4 ]
Lee, Joo-Heon [2 ]
Kim, Tae-Woong [3 ]
机构
[1] Hanyang Univ, Dept Civil & Environm Engn, Seoul 04763, South Korea
[2] Joongbu Univ, Dept Civil Engn, Goyang 10279, South Korea
[3] Hanyang Univ, Dept Civil & Environm Engn, Ansan 15588, South Korea
[4] Univ Faisalabad, Sch Civil Engn, Faisalabad 38000, Pakistan
关键词
Climate change; Drought propagation; Meteorological drought; Hydrological drought; RIVER-BASIN; CMIP5; TEMPERATURE; STREAMFLOW; TIME;
D O I
10.1007/s00477-019-01760-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Climate change is a main driving force that affects the hydrological cycle, leading to an increase in natural hazards. Among these natural hazards, drought is one of the most destructive and becomes more complex considering climate change. Therefore, it is necessary to investigate the effect of climate change on different types of drought. In this study, we examined the propagation probability of meteorological drought into hydrological drought using a probabilistic graphical model across South Korea. We performed correlation analyses among meteorological drought represented by Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) and hydrological drought by Standardized Runoff Index (SRI) on different time scales. Drought characteristics were examined under a baseline period, RCP 4.5, and 8.5 climate change scenarios, and the results illustrated that drought characteristics varied spatially. On average, drought severity of SPI increased in P1 (2011-2040) and then deceased in P2 (2041-2070) and P3 (2071-2099) under RCP 4.5, whereas drought severity also increased in P1 under RCP 8.5. However, average drought severity of SPEI increased in P3, whereas that of SRI showed a decreasing trend for all the periods. Finally, propagation occurrence probabilities of different states of meteorological drought resulting in different states of hydrological drought were examined under climate change scenarios. The average propagation probability of extreme state of meteorological drought resulting in moderate and severe condition of hydrological drought increased by 13% and 2%, respectively, under RCP 4.5; while average propagation probability of extreme state of meteorological drought resulting in severe and extreme conditions of hydrological drought increased by 1.5% and 84%, respectively, under RCP 8.5. We concluded that propagation probability of meteorological drought into hydrological drought increased significantly under climate change. These findings will be helpful for early mitigation of hydrological drought.
引用
收藏
页码:7 / 21
页数:15
相关论文
共 50 条
  • [21] Drought hazard transferability from meteorological to hydrological propagation
    Gu, Lei
    Chen, Jie
    Yin, Jiabo
    Xu, Chong-Yu
    Chen, Hua
    JOURNAL OF HYDROLOGY, 2020, 585 (585)
  • [22] Probabilistic Characteristics of Drought Propagation from Meteorological to Hydrological Drought in South Korea
    Muhammad Nouman Sattar
    Jin-Young Lee
    Ji-Yae Shin
    Tae-Woong Kim
    Water Resources Management, 2019, 33 : 2439 - 2452
  • [23] Probabilistic Characteristics of Drought Propagation from Meteorological to Hydrological Drought in South Korea
    Sattar, Muhammad Nouman
    Lee, Jin-Young
    Shin, Ji-Yae
    Kim, Tae-Woong
    WATER RESOURCES MANAGEMENT, 2019, 33 (07) : 2439 - 2452
  • [24] Investigation of multi-model spatiotemporal mesoscale drought projections over India under climate change scenario
    Gupta, Vivek
    Jain, Manoj Kumar
    JOURNAL OF HYDROLOGY, 2018, 567 : 489 - 509
  • [25] Multi-timescale assessment of propagation thresholds from meteorological to hydrological drought
    Wu, Jiefeng
    Chen, Xiaohong
    Yao, Huaxia
    Zhang, Dejian
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 765 (765)
  • [26] Assessing the Effect of Future Climate Change on Drought Characteristics and Propagation from Meteorological to Hydrological Droughts-A Comparison of Three Indices
    Sadhwani, Kashish
    Eldho, T. I.
    WATER RESOURCES MANAGEMENT, 2024, 38 (02) : 441 - 462
  • [27] Identification of propagation characteristics from meteorological drought to hydrological drought using daily drought indices and lagged correlations analysis
    Jeong, Min-Su
    Park, Seo-Yeon
    Kim, Young-Jun
    Yoon, Hyeon-Cheol
    Lee, Joo-Heon
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2024, 55
  • [28] Understanding the role of catchment and climate characteristics in the propagation of meteorological to hydrological drought
    Meresa, Hadush
    Zhang, Yongqiang
    Tian, Jing
    Faiz, Muhammad Abrar
    JOURNAL OF HYDROLOGY, 2023, 617
  • [29] Climate change projections from a multi-model ensemble of CORDEX and CMIPs over Angola
    Pinto, Izidine
    de Perez, Erin Coughlan
    Jaime, Catalina
    Wolski, Piotr
    van Aardenne, Lisa
    Jjemba, Eddie
    Suidman, Jasmijn
    Serrat-Capdevila, Aleix
    Tall, Arame
    ENVIRONMENTAL RESEARCH-CLIMATE, 2023, 2 (03):
  • [30] Assessment of meteorological drought change in the 21st century based on CMIP6 multi-model ensemble projections over mainland China
    Song, Zhihong
    Xia, Jun
    She, Dunxian
    Li, Lingcheng
    Hu, Chen
    Hong, Si
    JOURNAL OF HYDROLOGY, 2021, 601