Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm

被引:44
|
作者
Long, Wen [1 ,2 ]
Jiao, Jianjun [2 ]
Liang, Ximing [3 ]
Xu, Ming [2 ]
Tang, Mingzhu [4 ]
Cai, Shaohong [1 ]
机构
[1] Guizhou Univ Finance & Econ, Key Lab Econ Syst Simulat, Guiyang 550025, Peoples R China
[2] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Peoples R China
[3] Beijing Univ Civil Engn & Architecture, Sch Sci, Beijing 100044, Peoples R China
[4] Changsha Univ Sci & Technol, Sch Energy Power & Engn, Changsha 410114, Peoples R China
基金
中国国家自然科学基金;
关键词
Seagull optimization algorithm; Photovoltaic models; Parameter estimation; Differential evolution; Function optimization; SOLAR; EXTRACTION; CELL; IDENTIFICATION; ENERGY; MODULES; SINGLE; SYSTEM;
D O I
10.1016/j.energy.2022.123760
中图分类号
O414.1 [热力学];
学科分类号
摘要
Estimating parameters and establishing high-accuracy and high-reliability models of photovoltaic (PV) modules by using the actual current-voltage data is important to simulate, model, and optimize the PV systems. Several meta-heuristic optimization techniques have been developed to estimate the parameters of the solar PV models. However, it is still a challenging task to accurately, reliably, and quickly estimate the unknown parameters of PV models. This paper proposes a novel hybrid seagull optimization algorithm (HSOA) for estimating the unknown parameters of PV models effectively and accurately. In proposed HSOA, the personal historical best information is embedded into position search equation to improve the solution precision. A novel nonlinear escaping energy factor based on cosine function is presented for balancing global exploration and local exploitation. The differential mutation strategy is introduced to escape from the local optima. We firstly select twelve classical benchmark test functions to investigate the feasibility of HSOA, and experimental results show that HSOA is superior to most compared methods. Then, HSOA is used for solving parameters estimation problem of three benchmark solar PV models. The comparison results demonstrate that HSOA is superior to BOA, GWO, WOA, HHO, SOA, EEGWO, and ISCA on solution quality, convergence and reliability.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Estimation of Solar Photovoltaic Parameters Using Pattern Search Algorithm
    Derick, M.
    Rani, C.
    Rajesh, M.
    Busawon, K.
    Binns, R.
    [J]. EMERGING TRENDS IN ELECTRICAL, ELECTRONIC AND COMMUNICATIONS ENGINEERING, ELECOM 2016, 2017, 416 : 184 - 191
  • [32] A hybrid genetic algorithm for the estimation of parameters in detailed kinetic models
    Park, TY
    Froment, GF
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 1998, 22 : S103 - S110
  • [33] Photovoltaic model parameters identification using an innovative optimization algorithm
    El-Dabah, Mahmoud A.
    El-Sehiemy, Ragab A.
    Hasanien, Hany M.
    Saad, Bahaa
    [J]. IET RENEWABLE POWER GENERATION, 2023, 17 (07) : 1783 - 1796
  • [34] Novel Hybrid Optimization Technique for Solar Photovoltaic Output Prediction Using Improved Hippopotamus Algorithm
    Wang, Hongbin
    Mansor, Nurulafiqah Nadzirah Binti
    Bin Mokhlis, Hazlie
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [35] Coyote optimization algorithm for parameters extraction of three-diode photovoltaic models of photovoltaic modules
    Qais, Mohammed H.
    Hasanien, Hany M.
    Alghuwainem, Saad
    Nouh, Adnan S.
    [J]. ENERGY, 2019, 187
  • [36] Optimal estimation of Schottky diode parameters using a novel optimization algorithm: Equilibrium optimizer
    Rabehi, Abdelaziz
    Nail, Bachir
    Helal, Hicham
    Douara, Abdelmalek
    Ziane, Abderrezzaq
    Amrani, Mohammed
    Akkal, Boudali
    Benamara, Zineb
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2020, 146
  • [37] A novel hybrid algorithm based on rat swarm optimization and pattern search for parameter extraction of solar photovoltaic models
    Eslami, Mahdiyeh
    Akbari, Ehsan
    Seyed Sadr, Seyed T.
    Ibrahim, Banar F.
    [J]. ENERGY SCIENCE & ENGINEERING, 2022, 10 (08) : 2689 - 2713
  • [38] A multiple learning moth flame optimization algorithm with probability-based chaotic strategy for the parameters estimation of photovoltaic models
    Huang, Zhengyu
    Chen, Limin
    Li, Miao
    Liu, Peter X.
    Li, Chunquan
    [J]. JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2021, 13 (04)
  • [39] Novel Hybrid Optimization Algorithm for Parameter Estimation of Chaotic System
    Chang, Haotian
    Feng, Jing
    Jiang, Lei
    [J]. PROCEEDINGS OF THE 2016 INTERNATIONAL FORUM ON MECHANICAL, CONTROL AND AUTOMATION (IFMCA 2016), 2017, 113 : 277 - 282
  • [40] An Efficient Electric Charged Particles Optimization Algorithm for Numerical Optimization and Optimal Estimation of Photovoltaic Models
    Kamel, Salah
    Houssein, Essam H.
    Hassan, Mohamed H.
    Shouran, Mokhtar
    Hashim, Fatma A.
    [J]. MATHEMATICS, 2022, 10 (06)