Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm

被引:44
|
作者
Long, Wen [1 ,2 ]
Jiao, Jianjun [2 ]
Liang, Ximing [3 ]
Xu, Ming [2 ]
Tang, Mingzhu [4 ]
Cai, Shaohong [1 ]
机构
[1] Guizhou Univ Finance & Econ, Key Lab Econ Syst Simulat, Guiyang 550025, Peoples R China
[2] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Peoples R China
[3] Beijing Univ Civil Engn & Architecture, Sch Sci, Beijing 100044, Peoples R China
[4] Changsha Univ Sci & Technol, Sch Energy Power & Engn, Changsha 410114, Peoples R China
基金
中国国家自然科学基金;
关键词
Seagull optimization algorithm; Photovoltaic models; Parameter estimation; Differential evolution; Function optimization; SOLAR; EXTRACTION; CELL; IDENTIFICATION; ENERGY; MODULES; SINGLE; SYSTEM;
D O I
10.1016/j.energy.2022.123760
中图分类号
O414.1 [热力学];
学科分类号
摘要
Estimating parameters and establishing high-accuracy and high-reliability models of photovoltaic (PV) modules by using the actual current-voltage data is important to simulate, model, and optimize the PV systems. Several meta-heuristic optimization techniques have been developed to estimate the parameters of the solar PV models. However, it is still a challenging task to accurately, reliably, and quickly estimate the unknown parameters of PV models. This paper proposes a novel hybrid seagull optimization algorithm (HSOA) for estimating the unknown parameters of PV models effectively and accurately. In proposed HSOA, the personal historical best information is embedded into position search equation to improve the solution precision. A novel nonlinear escaping energy factor based on cosine function is presented for balancing global exploration and local exploitation. The differential mutation strategy is introduced to escape from the local optima. We firstly select twelve classical benchmark test functions to investigate the feasibility of HSOA, and experimental results show that HSOA is superior to most compared methods. Then, HSOA is used for solving parameters estimation problem of three benchmark solar PV models. The comparison results demonstrate that HSOA is superior to BOA, GWO, WOA, HHO, SOA, EEGWO, and ISCA on solution quality, convergence and reliability.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Static and dynamic solar photovoltaic models' parameters estimation using hybrid Rao optimization algorithm
    Wang, Shuhui
    Yu, Yongguang
    Hu, Wei
    [J]. JOURNAL OF CLEANER PRODUCTION, 2021, 315
  • [2] Improved crayfish optimization algorithm for parameters estimation of photovoltaic models
    Chaib, Lakhdar
    Tadj, Mohammed
    Choucha, Abdelghani
    Khemili, Fatima Zahra
    EL-Fergany, Attia
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2024, 313
  • [3] Estimation of Archie parameters by a novel hybrid optimization algorithm
    Liu, Jianjun
    Dong, Shaoqun
    Zhang, Lanlan
    Ma, Qiang
    Wu, Changzhi
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2015, 135 : 232 - 239
  • [4] Novel hybrid kepler optimization algorithm for parameter estimation of photovoltaic modules
    Reda Mohamed
    Mohamed Abdel-Basset
    Karam M. Sallam
    Ibrahim M. Hezam
    Ahmad M. Alshamrani
    Ibrahim A. Hameed
    [J]. Scientific Reports, 14
  • [5] Novel hybrid kepler optimization algorithm for parameter estimation of photovoltaic modules
    Mohamed, Reda
    Abdel-Basset, Mohamed
    Sallam, Karam M.
    Hezam, Ibrahim M.
    Alshamrani, Ahmad M.
    Hameed, Ibrahim A.
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)
  • [6] Estimation of Parameters of Triple Diode Photovoltaic Models Using Hybrid Particle Swarm and Grey Wolf Optimization
    Ellithy, Hazem Hassan
    Taha, Adel M.
    Hasanien, Hany M.
    Attia, Mahmoud A.
    El-Shahat, Adel
    Aleem, Shady H. E. Abdel
    [J]. SUSTAINABILITY, 2022, 14 (15)
  • [7] Parameter Estimation of Different Photovoltaic Models Using Hybrid Particle Swarm Optimization and Gravitational Search Algorithm
    Gupta, Jyoti
    Hussain, Arif
    Singla, Manish Kumar
    Nijhawan, Parag
    Haider, Waseem
    Kotb, Hossam
    AboRas, Kareem M. M.
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [8] Parameters identification of photovoltaic models using an improved JAYA optimization algorithm
    Yu, Kunjie
    Liang, J. J.
    Qu, B. Y.
    Chen, Xu
    Wang, Heshan
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2017, 150 : 742 - 753
  • [9] Optimal Performance and Application for Seagull Optimization Algorithm Using a Hybrid Strategy
    Xia, Qingyu
    Ding, Yuanming
    Zhang, Ran
    Zhang, Huiting
    Li, Sen
    Li, Xingda
    [J]. ENTROPY, 2022, 24 (07)
  • [10] An Effective Optimization Algorithm for Parameters Identification of Photovoltaic Models
    Arandian, Behdad
    Eslami, Mahdiyeh
    Abd Khalid, Saifulnizam
    Khan, Baseem
    Sheikh, Usman Ullah
    Akbari, Ehsan
    Mohammed, Adil Hussein
    [J]. IEEE ACCESS, 2022, 10 : 34069 - 34084