Support vector machines for HIV-1 protease cleavage site prediction

被引:0
|
作者
Nanni, L [1 ]
Lumini, A [1 ]
机构
[1] Univ Bologna, DEIS, IEIIT, CNR, I-40136 Bologna, Italy
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, several works have approached the HIV-1 protease specificity problem by applying a number of classifier creation and combination methods, from the field of machine learning. In this work we propose a hierarchical classifier (HQ architecture. Moreover, we show that radial basis function-support vector machines may obtain a lower error rate than linear support vector machines, if a step of feature selection and a step of feature transformation is performed. The error rate decreases from 9.1% using linear support vector machines to 6.85% using the new hierarchical classifier.
引用
收藏
页码:413 / 420
页数:8
相关论文
共 50 条
  • [41] Accurate splice site prediction using support vector machines
    Sören Sonnenburg
    Gabriele Schweikert
    Petra Philips
    Jonas Behr
    Gunnar Rätsch
    [J]. BMC Bioinformatics, 8
  • [42] Variable context Markov chains for HIV protease cleavage site prediction
    Ogul, Hasan
    [J]. BIOSYSTEMS, 2009, 96 (03) : 246 - 250
  • [43] Heterogeneity in recombinant HIV-1 integrase corrected by site-directed mutagenesis: The identification and elimination of a protease cleavage site
    Hickman, AB
    Dyda, F
    Craigie, R
    [J]. PROTEIN ENGINEERING, 1997, 10 (05): : 601 - 606
  • [44] MUTATIONAL ANALYSIS OF THE HIV-1 GLYCOPROTEIN CLEAVAGE SITE
    DUBAY, JW
    ROBERTS, SJ
    SHIN, HJ
    HUNTER, E
    [J]. JOURNAL OF CELLULAR BIOCHEMISTRY, 1993, : 28 - 28
  • [45] Drug-resistant HIV-1 protease regains functional dynamics through cleavage site coevolution
    Ozer, Nevra
    Ozen, Aysegul
    Schiffer, Celia A.
    Haliloglu, Turkan
    [J]. EVOLUTIONARY APPLICATIONS, 2015, 8 (02): : 185 - 198
  • [46] A novel HIV vaccine approach: targeting the protease cleavage sites of HIV-1
    Luo, M.
    Tang, D.
    Capina, R.
    Yuan, X. -Y.
    Prego, C.
    Pinto, J. C.
    Alonso, M.
    Barry, C.
    Pilon, R.
    Daniuk, C.
    Tuff, J.
    Pillet, S.
    La, D.
    Bielawny, T.
    Czarnecki, C.
    Lacap, P.
    Peters, H.
    Wong, G.
    Kimani, M.
    Wachihi, C.
    Kimani, J.
    Ball, T.
    Sandstrom, P.
    Kobinger, G.
    Plummer, F.
    [J]. JOURNAL OF THE INTERNATIONAL AIDS SOCIETY, 2012, 15 : 29 - 30
  • [47] Splice site prediction using support vector machines with a Bayes kernel
    Zhang, Y
    Chu, CH
    Chen, YX
    Zha, HY
    Ji, X
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2006, 30 (01) : 73 - 81
  • [48] Evolutionary based ensemble framework for realizing transfer learning in HIV-1 Protease cleavage sites prediction
    Deepak Singh
    Pradeep Singh
    Dilip Singh Sisodia
    [J]. Applied Intelligence, 2019, 49 : 1260 - 1282
  • [49] Evolutionary based ensemble framework for realizing transfer learning in HIV-1 Protease cleavage sites prediction
    Singh, Deepak
    Singh, Pradeep
    Sisodia, Dilip Singh
    [J]. APPLIED INTELLIGENCE, 2019, 49 (04) : 1260 - 1282
  • [50] CLEAVAGE OF HIV-1 GAG POLYPROTEIN SYNTHESIZED INVITRO - SEQUENTIAL CLEAVAGE BY THE VIRAL PROTEASE
    ERICKSONVIITANEN, S
    MANFREDI, J
    VIITANEN, P
    TRIBE, DE
    TRITCH, R
    HUTCHISON, CA
    LOEB, DD
    SWANSTROM, R
    [J]. AIDS RESEARCH AND HUMAN RETROVIRUSES, 1989, 5 (06) : 577 - 591