New semi-analytical solutions of the time-fractional Fokker-Planck equation by the neural network method

被引:11
|
作者
Wei, Jia-Li [1 ,2 ]
Wu, Guo-Cheng [2 ]
Liu, Bao-Qing [1 ]
Zhao, Zhengang [3 ]
机构
[1] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210023, Jiangsu, Peoples R China
[2] Neijiang Normal Univ, Coll Math & Informat Sci, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Peoples R China
[3] Shanghai Customs Coll, Dept Fundamental Courses, Shanghai 201204, Peoples R China
来源
OPTIK | 2022年 / 259卷
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Fractional Fokker-Planck equation; L-1 numerical scheme; Neural network; Gradient descent algorithm; DIFFERENTIAL-EQUATIONS; APPROXIMATE; DIFFUSION;
D O I
10.1016/j.ijleo.2022.168896
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper suggests a neural network method for solving the time-fractional Fokker-Planck equation. An energy function is constructed by means of initial-boundary value conditions. The Caputo derivative is approximated by L-1 numerical scheme and an unconstrained discretization minimization problem is presented. Gradient descent algorithm is adopted for neural network training. Semi-analytical solutions are obtained where two numerical examples demonstrate the method's efficiency.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Numerical solutions for solving model time-fractional Fokker-Planck equation
    Mahdy, Amr M. S.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (02) : 1120 - 1135
  • [2] A new analysis of a numerical method for the time-fractional Fokker-Planck equation with general forcing
    Huang, Can
    Le, Kim Ngan
    Stynes, Martin
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (02) : 1217 - 1240
  • [3] A computational technique for solving the time-fractional Fokker-Planck equation
    Roul, Pradip
    Kumari, Trishna
    Rohil, Vikas
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 9736 - 9752
  • [4] NUMERICAL SOLUTION OF TIME-FRACTIONAL ORDER FOKKER-PLANCK EQUATION
    Prakash, Amit
    Kumar, Manoj
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (03): : 446 - 454
  • [5] Method of variable separation for investigating exact solutions and dynamical properties of the time-fractional Fokker-Planck equation
    Rui, Weiguo
    Yang, Xinsong
    Chen, Fen
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 595
  • [6] Numerical Method for the Time Fractional Fokker-Planck Equation
    Cao, Xue-Nian
    Fu, Jiang-Li
    Huang, Hu
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (06) : 848 - 863
  • [7] A backward euler orthogonal spline collocation method for the time-fractional Fokker-Planck equation
    Fairweather, Graeme
    Zhang, Haixiang
    Yang, Xuehua
    Xu, Da
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (05) : 1534 - 1550
  • [8] Approximation of an optimal control problem for the time-fractional Fokker-Planck equation
    Camilli, Fabio
    Duisembay, Serikbolsyn
    Tang, Qing
    [J]. arXiv, 2020,
  • [9] APPROXIMATION OF AN OPTIMAL CONTROL PROBLEM FOR THE TIME-FRACTIONAL FOKKER-PLANCK EQUATION
    Camilli, Fabio
    Duisembay, Serikbolsyn
    Tang, Qing
    [J]. JOURNAL OF DYNAMICS AND GAMES, 2021, 8 (04): : 381 - 402
  • [10] WASSERSTEIN GRADIENT FLOW FORMULATION OF THE TIME-FRACTIONAL FOKKER-PLANCK EQUATION
    Manh Hong Duong
    Jin, Bangti
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (07) : 1949 - 1975