Graph-Embedded Convolutional Neural Network for Image-Based EEG Emotion Recognition

被引:54
|
作者
Song, Tengfei [1 ,2 ]
Zheng, Wenming [3 ,4 ]
Liu, Suyuan [3 ,4 ]
Zong, Yuan [3 ,4 ]
Cui, Zhen [5 ]
Li, Yang [1 ,2 ]
机构
[1] Southeast Univ, Minist Educ, Key Lab Child Dev & Learning Sci, Nanjing 210096, Peoples R China
[2] Southeast Univ, Sch Informat Sci & Engn, Nanjing 210096, Peoples R China
[3] Southeast Univ, Minist Educ, Key Lab Child Dev & Learning Sci, Nanjing 210096, Peoples R China
[4] Southeast Univ, Sch Biol Sci & Med Engn, Nanjing 210096, Peoples R China
[5] Nanjing Univ Sci & Technol, Sch Comp Sci, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Electroencephalography; Feature extraction; Electrodes; Emotion recognition; Brain modeling; Image recognition; Data mining; EEG emotion recognition; graph convolutional neural network; EEG image generation; graph embedded convolutional neural network; DIFFERENTIAL ENTROPY FEATURE;
D O I
10.1109/TETC.2021.3087174
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Emotion recognition from electroencephalograph (EEG) signals has long been essential for affective computing. In this article, we evaluate EEG emotion recognition by converting EEG signals from multiple channels into images such that richer spatial information can be considered and the question of EEG-based emotion recognition can be converted into image recognition. To this end, we propose a novel method to generate continuous images from discrete EEG signals by introducing offset variables following a Gaussian distribution for each EEG channel to alleviate the biased electrode coordinates during image generation. In addition, a novel graph-embedded convolutional neural network (GECNN) method is proposed to combine the local convolutional neural network (CNN) features with global functional features to provide complementary emotion information. In GECNN, the attention mechanism is applied to extract more discriminative local features. Simultaneously, dynamical graph filtering explores the intrinsic relationships between different EEG regions. The local and global functional features are finally fused for emotion recognition. Extensive experiments in subject-dependent and subject-independent protocols are conducted to evaluate the performance of the proposed GECNN model on four datasets, i.e., SEED, SDEA, DREAMER, and MPED.
引用
下载
收藏
页码:1399 / 1413
页数:15
相关论文
共 50 条
  • [41] CR-GCN: Channel-Relationships-Based Graph Convolutional Network for EEG Emotion Recognition
    Jia, Jingjing
    Zhang, Bofeng
    Lv, Hehe
    Xu, Zhikang
    Hu, Shengxiang
    Li, Haiyan
    BRAIN SCIENCES, 2022, 12 (08)
  • [42] EEG-Based Emotion Recognition Using Trainable Adjacency Relation Driven Graph Convolutional Network
    Li, Wei
    Wang, Mingming
    Zhu, Junyi
    Song, Aiguo
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2023, 15 (04) : 1656 - 1672
  • [43] Speech Emotion Recognition Based on Temporal-Spatial Learnable Graph Convolutional Neural Network
    Yan, Jingjie
    Li, Haihua
    Xu, Fengfeng
    Zhou, Xiaoyang
    Liu, Ying
    Yang, Yuan
    ELECTRONICS, 2024, 13 (11)
  • [44] Design of Intelligent EEG System for Human Emotion Recognition with Convolutional Neural Network
    Wang, Kai-Yen
    Ho, Yun-Lung
    Huang, Yu-De
    Fang, Wai-Chi
    2019 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2019), 2019, : 142 - 145
  • [45] Hierarchical Convolutional Neural Networks for EEG-Based Emotion Recognition
    Li, Jinpeng
    Zhang, Zhaoxiang
    He, Huiguang
    COGNITIVE COMPUTATION, 2018, 10 (02) : 368 - 380
  • [46] Hierarchical Convolutional Neural Networks for EEG-Based Emotion Recognition
    Jinpeng Li
    Zhaoxiang Zhang
    Huiguang He
    Cognitive Computation, 2018, 10 : 368 - 380
  • [47] EEG-based emotion recognition with deep convolutional neural networks
    Ozdemir, Mehmet Akif
    Degirmenci, Murside
    Izci, Elf
    Akan, Aydin
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2021, 66 (01): : 43 - 57
  • [48] A Novel Convolutional Neural Networks for Emotion Recognition Based on EEG Signal
    Wen, Zhiyuan
    Xu, Ruifeng
    Du, Jiachen
    2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 672 - 677
  • [49] Siam-GCAN: A Siamese Graph Convolutional Attention Network for EEG Emotion Recognition
    Zeng, Hong
    Wu, Qi
    Jin, Yanping
    Zheng, Haohao
    Li, Mingming
    Zhao, Yue
    Hu, Hua
    Kong, Wanzeng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [50] Emotion recognition of EEG signals based on contrastive learning graph convolutional model
    Zhang, Yiling
    Liao, Yuan
    Chen, Wei
    Zhang, Xiruo
    Huang, Liya
    JOURNAL OF NEURAL ENGINEERING, 2024, 21 (04)