Fabrication of Nanoheight Channels Incorporating Surface Acoustic Wave Actuation via Lithium Niobate for Acoustic Nanofluidics

被引:5
|
作者
Zhang, Naiqing [1 ,2 ]
Friend, James [1 ,2 ]
机构
[1] Univ Calif San Diego, Medically Adv Devices Lab, Ctr Med Devices, Dept Mech & Aerosp Engn,Jacobs Sch Engn, San Diego, CA 92103 USA
[2] Univ Calif San Diego, Dept Surg, Sch Med, San Diego, CA 92103 USA
来源
基金
美国国家科学基金会;
关键词
Engineering; Issue; 156; acoustofluidics; nanofluidics; nanofabrication; surface acoustic waves; room-temperature bonding; lithium niobate; plasma activated bonding; TEMPERATURE; WATER;
D O I
10.3791/60648
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Controlled nanoscale manipulation of fluids is known to be exceptionally difficult due to the dominance of surface and viscous forces. Megahertz-order surface acoustic wave (SAW) devices generate tremendous acceleration on their surface, up to 10(8) m/s(2), in turn responsible for many of the observed effects that have come to define acoustofluidics: acoustic streaming and acoustic radiation forces. These effects have been used for particle, cell, and fluid manipulation at the microscale, although more recently SAW has been used to produce similar phenomena at the nanoscale through an entirely different set of mechanisms. Controllable nanoscale fluid manipulation offers a broad range of opportunities in ultrafast fluid pumping and biomacromolecule dynamics useful for physical and biological applications. Here, we demonstrate nanoscaleheight channel fabrication via room-temperature lithium niobate (LN) bonding integrated with a SAW device. We describe the entire experimental process including nano-height channel fabrication via dry etching, plasma-activated bonding on lithium niobate, the appropriate optical setup for subsequent imaging, and SAW actuation. We show representative results for fluid capillary filling and fluid draining in a nanoscale channel induced by SAW. This procedure offers a practical protocol for nanoscale channel fabrication and integration with SAW devices useful to build upon for future nanofluidics applications.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Shear Horizontal Surface Acoustic Wave COMSOL Modeling on Lithium Niobate Piezoelectric Substrate
    Ten, S. T.
    Hashim, U.
    Liu, W. W.
    Foo, K. L.
    Voon, C. H.
    Hisham, H.
    Nazwa, T.
    Ten, S. T.
    Sudin, A.
    Humaira, M. S. Nur
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON SEMICONDUCTOR ELECTRONICS (ICSE), 2014, : 104 - 107
  • [22] Surface Acoustic Wave Propagation in Lanthanum Strontium Manganese Oxide - Lithium Niobate Structures
    Kazdailis, Paulius
    Giriuniene, Ramute
    Rimeika, Romualdas
    Ciplys, Daumantas
    Sliuziene, Kristina
    Lisauskas, Vaclovas
    Vengalis, Bonifacas
    Shur, Michael S.
    [J]. ACTA ACUSTICA UNITED WITH ACUSTICA, 2013, 99 (03) : 493 - 497
  • [23] Surface acoustic wave generation and detection using graphene interdigitated transducers on lithium niobate
    Mayorov, A. S.
    Hunter, N.
    Muchenje, W.
    Wood, C. D.
    Rosamond, M.
    Linfield, E. H.
    Davies, A. G.
    Cunningham, J. E.
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (08)
  • [24] ION-IMPLANTED SURFACE-ACOUSTIC-WAVE GUIDES ON LITHIUM-NIOBATE
    HARTEMANN, P
    CAUVARD, P
    DESBOIS, D
    [J]. APPLIED PHYSICS LETTERS, 1978, 32 (05) : 266 - 268
  • [25] HIGH-PERFORMANCE LITHIUM NIOBATE ACOUSTIC SURFACE WAVE TRANSDUCERS AND DELAY LINES
    COLLINS, JH
    GERARD, HM
    SHAW, HJ
    [J]. APPLIED PHYSICS LETTERS, 1968, 13 (09) : 312 - &
  • [26] Stability improvement of surface acoustic wave motor using chemically reduced lithium niobate
    Shigematsu, Takashi
    Kurosawa, Minoru Kuribayashi
    [J]. TRANSDUCERS '07 & EUROSENSORS XXI, DIGEST OF TECHNICAL PAPERS, VOLS 1 AND 2, 2007,
  • [27] Growth of diamond film on single crystal lithium niobate for surface acoustic wave devices
    Jagannadham, K
    Lance, MJ
    Watkins, TR
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2004, 22 (04): : 1105 - 1109
  • [28] Lithium-Niobate-Based Surface Acoustic Wave Device Directly Integrated on IC
    Park, KyeongDong
    Esashi, Masayoshi
    Tanaka, Shuji
    [J]. 2011 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2011, : 1956 - 1959
  • [29] Effect of Alumina Film on the Surface Acoustic Wave Properties of Crystalline Quartz and Lithium Niobate
    Shih, Wen-Ching
    Lin, Shu-Jheng
    Wu, Mu-Shiang
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (09)
  • [30] Acoustic Wave Filter Based on Periodically Poled Lithium Niobate
    Courjon, Emilie
    Bassignot, Florent
    Ulliac, Gwenn
    Benchabane, Sarah
    Ballandras, Sylvain
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2012, 59 (09) : 1942 - 1949