Forecasting Models for Hydropower Unit Stability Using LS-SVM

被引:7
|
作者
Qiao, Liangliang [1 ]
Chen, Qijuan [1 ]
机构
[1] Wuhan Univ, Coll Power & Mech Engn, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
ACCIDENT; SYSTEM;
D O I
10.1155/2015/350148
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper discusses a least square support vector machine (LS-SVM) approach for forecasting stability parameters of Francis turbine unit. To achieve training and testing data for the models, four field tests were presented, especially for the vibration in Y-direction of lower generator bearing (LGB) and pressure in draft tube (DT). A heuristic method such as a neural network using Backpropagation (NNBP) is introduced as a comparison model to examine the feasibility of forecasting performance. In the experimental results, LS-SVM showed superior forecasting accuracies and performances to the NNBP, which is of significant importance to better monitor the unit safety and potential faults diagnosis.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A novel method based on PCA and LS-SVM for power load forecasting
    Liu, Baoying
    Yang, Rengang
    [J]. 2008 THIRD INTERNATIONAL CONFERENCE ON ELECTRIC UTILITY DEREGULATION AND RESTRUCTURING AND POWER TECHNOLOGIES, VOLS 1-6, 2008, : 759 - 763
  • [22] Research on Forecasting the Cost of Residential Construction Based on PCA and LS-SVM
    Qin, Zhongfu
    Lei, Xiaolong
    Meng, Liqing
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ELECTRONICS, MECHANICS, CULTURE AND MEDICINE, 2016, 45 : 84 - 88
  • [23] A robust LS-SVM regression
    Valyon, J
    Horváth, G
    [J]. ENFORMATIKA, VOL 7: IEC 2005 PROCEEDINGS, 2005, : 148 - 153
  • [24] A Robust LS-SVM Regression
    Valyon, Jozsef
    Horvath, Gabor
    [J]. PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 7, 2005, 7 : 148 - 153
  • [25] Identifying linear model parameters using LS-SVM and standard SVM
    Zhang, Haoran
    Jia, Jing
    Wang, Xiaodong
    Zhang, Changjiang
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13 : 251 - 255
  • [26] Study on Hammerstein Models of Sparse Nonlinear Identification with LS-SVM
    Zhao, Huaqi
    Cao, Jun
    Liu, Yaqiu
    [J]. 2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 2559 - 2563
  • [27] Parameter optimization of LS-SVM for regression using NGA
    Wang, Qi
    Feng, Zhigang
    SHIDA, Katsunori
    [J]. INTELLIGENT COMPUTING: THEORY AND APPLICATIONS V, 2007, 6560
  • [28] Fast compressive tracking using incremental LS-SVM
    Zhang, Ximing
    Wang, Mingang
    [J]. Journal of Computational Information Systems, 2015, 11 (15): : 5519 - 5530
  • [29] Image Retrieval Using Discriminant Embedding and LS-SVM
    Wang, Ziqiang
    Sun, Xia
    [J]. PROCEEDINGS OF THE 2009 CHINESE CONFERENCE ON PATTERN RECOGNITION AND THE FIRST CJK JOINT WORKSHOP ON PATTERN RECOGNITION, VOLS 1 AND 2, 2009, : 324 - 328
  • [30] Functional form estimation using oblique projection matrices for LS-SVM regression models
    Caicedo, Alexander
    Varon, Carolina
    Van Huffel, Sabine
    Suykens, Johan A. K.
    [J]. PLOS ONE, 2019, 14 (06):