Automated detection of diabetic retinopathy using convolutional neural networks on a small dataset

被引:60
|
作者
Samanta, Abhishek [1 ]
Saha, Aheli [1 ]
Satapathy, Suresh Chandra [1 ]
Fernandes, Steven Lawrence [2 ]
Zhang, Yu-Dong [3 ]
机构
[1] Kalinga Inst Ind Technol Deemed Be Univ, Sch Comp Engn, Bhubaneswar 751024, Odisha, India
[2] Sahyadri Coll Engn & Management, Dept Elect & Commun Engn, Mangaluru 575007, India
[3] Univ Leicester, Dept Informat, Leicester LE1 7RH, Leics, England
关键词
CNN architecture; Colour fundus photography; Diabetic Retinopathy;
D O I
10.1016/j.patrec.2020.04.026
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diabetic Retinopathy is a complication based on patients suffering from type-1 or type-2 diabetes. Early detection is essential as complication can lead to vision problems such as retinal detachment, vitreous hemorrhage and glaucoma. The principal stages of diabetic retinopathy are non-Proliferative diabetic retinopathy and Proliferative diabetic retinopathy. In this paper, we propose a transfer learning based CNN architecture on colour fundus photography that performs relatively well on a much smaller dataset of skewed classes of 3050 training images and 419 validation images in recognizing classes of Diabetic Retinopathy from hard exudates, blood vessels and texture. This model is extremely robust and lightweight, garnering a potential to work considerably well in small real time applications with limited computing power to speed up the screening process. The dataset was trained on Google Colab. We trained our model on 4 classes - I)No DR ii)Mild DR iii)Moderate DR iv)Proliferative DR, and achieved a Cohens Kappa score of 0.8836 on the validation set along with 0.9809 on the training set. © 2020 Elsevier B.V.
引用
收藏
页码:293 / 298
页数:6
相关论文
共 50 条
  • [1] Automated Detection of Diabetic Retinopathy Using Deep Convolutional Neural Networks
    Xu, Kele
    Zhu, Li
    Wang, Ruixing
    Liu, Chang
    Zhao, Yi
    [J]. MEDICAL PHYSICS, 2016, 43 (06) : 3406 - 3406
  • [2] Diabetic Retinopathy Detection using Deep Convolutional Neural Networks
    Doshi, Darshit
    Shenoy, Aniket
    Sidhpura, Deep
    Gharpure, Prachi
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMPUTING, ANALYTICS AND SECURITY TRENDS (CAST), 2016, : 261 - 266
  • [3] Automated detection of diabetic retinopathy using custom convolutional neural network
    Albahli, Saleh
    Yar, Ghulam Nabi Ahmad Hassan
    [J]. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2022, 30 (02) : 275 - 291
  • [4] Automated detection of diabetic retinopathy using optimized convolutional neural network
    Minija, S. Jasmine
    Rejula, M. Anline
    Ross, B. Shamina
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (07) : 21065 - 21080
  • [5] Automated detection of diabetic retinopathy using optimized convolutional neural network
    S. Jasmine Minija
    M. Anline Rejula
    B. Shamina Ross
    [J]. Multimedia Tools and Applications, 2024, 83 : 21065 - 21080
  • [6] Exudate Detection for Diabetic Retinopathy Using Pretrained Convolutional Neural Networks
    Mateen, Muhammad
    Wen, Junhao
    Nasrullah, Nasrullah
    Sun, Song
    Hayat, Shaukat
    [J]. COMPLEXITY, 2020, 2020
  • [7] Exudate Detection for Diabetic Retinopathy With Convolutional Neural Networks
    Yu, Shuang
    Xiao, Di
    Kanagasingam, Yogesan
    [J]. 2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 1744 - 1747
  • [8] Diabetic retinopathy detection using red lesion localization and convolutional neural networks
    Zago, Gabriel Tozatto
    Andreao, Rodrigo Varejao
    Dorizzi, Bernadette
    Teatini Salles, Evandro Ottoni
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 116
  • [9] Prediction of Diabetic Retinopathy using Convolutional Neural Networks
    Alsuwat, Manal
    Alalawi, Hana
    Alhazmi, Shema
    Al-Shareef, Sarah
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (07) : 843 - 852
  • [10] Automated Retinopathy of Prematurity Case Detection with Convolutional Neural Networks
    Worrall, Daniel E.
    Wilson, Clare M.
    Brostow, Gabriel J.
    [J]. DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 : 68 - 76