Prediction of Diabetic Retinopathy using Convolutional Neural Networks

被引:0
|
作者
Alsuwat, Manal [1 ]
Alalawi, Hana [1 ]
Alhazmi, Shema [1 ]
Al-Shareef, Sarah [1 ]
机构
[1] Umm AlQura Univ, Coll Comp Sci & Informat Syst, Comp Sci Dept, Mecca 21955, Saudi Arabia
关键词
CNN; convolutional neural networks; deep learning; transfer learning; medical imaging; diabetic retinopathy; retina fundus images;
D O I
10.14569/IJACSA.2022.0130798
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Diabetic retinopathy (DR) is among the most dangerous diabetic complications that can lead to lifelong blindness if left untreated. One of the essential difficulties in DR is early discovery, which is crucial for therapy progress. The accurate diagnosis of the DR stage is famously complicated and demands a skilled analysis by the expert being of fundus images. This paper detects DR and classifies its stage using retina images by applying conventional neural networks and transfer learning models. Three deep learning models were investigated: trained from scratch CNN and pre-trained InceptionV3 and Efficient-NetsB5. Experiment results show that the proposed CNN model outperformed the pre-trained models with a 9 to 25% relative improvement in F1-score compared to pre-trained InceptionV3 and EfficientNetsB5, respectively.
引用
收藏
页码:843 / 852
页数:10
相关论文
共 50 条
  • [1] Convolutional Neural Networks for Diabetic Retinopathy
    Pratt, Harry
    Coenen, Frans
    Broadbent, Deborah M.
    Harding, Simon P.
    Zheng, Yalin
    [J]. 20TH CONFERENCE ON MEDICAL IMAGE UNDERSTANDING AND ANALYSIS (MIUA 2016), 2016, 90 : 200 - 205
  • [2] Diabetic Retinopathy Detection using Deep Convolutional Neural Networks
    Doshi, Darshit
    Shenoy, Aniket
    Sidhpura, Deep
    Gharpure, Prachi
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMPUTING, ANALYTICS AND SECURITY TRENDS (CAST), 2016, : 261 - 266
  • [3] Diabetic Retinopathy Stage Classification using Convolutional Neural Networks
    Wang, Xiaoliang
    Lu, Yongjin
    Wang, Yujuan
    Chen, Wei-Bang
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), 2018, : 465 - 471
  • [4] Automated Detection of Diabetic Retinopathy Using Deep Convolutional Neural Networks
    Xu, Kele
    Zhu, Li
    Wang, Ruixing
    Liu, Chang
    Zhao, Yi
    [J]. MEDICAL PHYSICS, 2016, 43 (06) : 3406 - 3406
  • [5] Exudate Detection for Diabetic Retinopathy Using Pretrained Convolutional Neural Networks
    Mateen, Muhammad
    Wen, Junhao
    Nasrullah, Nasrullah
    Sun, Song
    Hayat, Shaukat
    [J]. COMPLEXITY, 2020, 2020
  • [6] SIMULATION OF DIABETIC RETINOPATHY UTILIZING CONVOLUTIONAL NEURAL NETWORKS
    Rajarajeswari, P.
    Moorthy, Jayashree
    Beg, O. Anwar
    [J]. JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2022, 22 (02)
  • [7] Deep Convolutional Neural Networks for Diabetic Retinopathy Classification
    Lian, Chunyan
    Liang, Yixiong
    Kang, Rui
    Xiang, Yao
    [J]. ICAIP 2018: 2018 THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN IMAGE PROCESSING, 2018, : 68 - 72
  • [8] Exudate Detection for Diabetic Retinopathy With Convolutional Neural Networks
    Yu, Shuang
    Xiao, Di
    Kanagasingam, Yogesan
    [J]. 2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 1744 - 1747
  • [9] Multiple Convolutional Neural Networks for Diabetic Retinopathy Classification
    Schweisthal, Brigitte
    Lascu, Mihaela
    [J]. 2021 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB 2021), 9TH EDITION, 2021,
  • [10] LEARNING THE FEATURES OF DIABETIC RETINOPATHY WITH CONVOLUTIONAL NEURAL NETWORKS
    Pratt, H.
    Williams, B. M.
    Broadbent, D.
    Harding, S. P.
    Coenen, F.
    Zheng, Y.
    [J]. EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2019, 29 (03) : NP15 - NP16