Multivalent Noncovalent Interfacing and Cross-Linking of Supramolecular Tubes

被引:6
|
作者
Xiu, Fangyuan [1 ]
Knezevic, Anamarija [1 ,2 ]
Kwangmettatam, Supaporn [1 ]
Di Iorio, Daniele [1 ]
Huskens, Jurriaan [1 ]
Kudernac, Tibor [1 ,3 ]
机构
[1] Univ Twente, MESA Inst Nanotechnol, Mol Nanofabricat Grp, POB 207, NL-7500 AE Enschede, Netherlands
[2] Rudjer Boskovic Inst, Div Organ Chem & Biochem, Bijenicka Cesta 54, Zagreb 10000, Croatia
[3] Fac Sci & Engn, Mol Inorgan Chem Stratingh Inst Chem, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
chiral tubes; cross-linking; streptavidin-biotin interactions; supramolecular networks; supramolecular polymers; surface binding; SUPPORTED LIPID-BILAYERS; ATTACHED POLYMER NETWORKS; SUBSEQUENT HYBRIDIZATION; MECHANICAL-PROPERTIES; DNA IMMOBILIZATION; BIOTIN; STREPTAVIDIN; THERMOPHORESIS; PLATFORMS; CHEMISTRY;
D O I
10.1002/adma.202105926
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Natural supramolecular filaments have the ability to cross-link with each other and to interface with the cellular membrane via biomolecular noncovalent interactions. This behavior allows them to form complex networks within as well as outside the cell, i.e., the cytoskeleton and the extracellular matrix, respectively. The potential of artificial supramolecular polymers to interact through specific noncovalent interactions has so far only seen limited exploration due to the dynamic nature of supramolecular interactions. Here, a system of synthetic supramolecular tubes that cross-link forming supramolecular networks, and at the same time bind to biomimetic surfaces by the aid of noncovalent streptavidin-biotin linkages, is demonstrated. The architecture of the networks can be engineered by controlling the density of the biotin moiety at the exterior of the tubes as well as by the concentration of the streptavidin. The presented strategy provides a pathway for designing adjustable artificial supramolecular superstructures, which can potentially yield more complex biomimetic adaptive materials.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Controlling the Cross-Linking Density of Supramolecular Hydrogels Formed by Heterotelechelic Associating Copolymers
    Brassinne, Jeremy
    Gohy, Jean-Francois
    Fustin, Charles-Andre
    MACROMOLECULES, 2014, 47 (13) : 4514 - 4524
  • [32] Themoreversible cross-linking rubber using supramolecular hydrogen-bonding networks
    Chino, K
    Ashiura, M
    MACROMOLECULES, 2001, 34 (26) : 9201 - 9204
  • [33] The Effects of Cross-Linking in a Supramolecular Binder on Cycle Life in Silicon Microparticle Anodes
    Lopez, Jeffrey
    Chen, Zheng
    Wang, Chao
    Andrews, Sean C.
    Cui, Yi
    Bao, Zhenan
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (03) : 2318 - 2324
  • [34] Size-Complementary Rotaxane Cross-Linking for the Stabilization and Degradation of a Supramolecular Network
    Kohsaka, Yasuhiro
    Nakazono, Kazuko
    Koyama, Yasuhito
    Asai, Shigeo
    Takata, Toshikazu
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (21) : 4872 - 4875
  • [35] Evaluation of cross-linking procedures of collagen tubes used in peripheral nerve repair
    Itoh, S
    Takakuda, K
    Kawabata, S
    Aso, Y
    Kasai, K
    Itoh, H
    Shinomiya, K
    BIOMATERIALS, 2002, 23 (23) : 4475 - 4481
  • [36] Cross-linking electrospinning
    Han, Wei-Hua
    Wang, Qing-Yu
    Kang, Yuan-Yi
    Shi, Li-Rui
    Long, Yu
    Zhou, Xin
    Hao, Chun-Cheng
    NANOSCALE, 2023, 15 (38) : 15513 - 15551
  • [37] Collagen Cross-Linking
    Kymionis, George D.
    Portaliou, Dimitra M.
    OPHTHALMOLOGY, 2010, 117 (10) : 2040 - +
  • [38] CHEMICAL CROSS-LINKING
    BLUESTEI.AC
    RUBBER AGE, 1968, 100 (01): : 72 - &
  • [39] COLLAGEN CROSS-LINKING
    RICARDBLUM, S
    VILLE, G
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY, 1989, 21 (11): : 1185 - 1189
  • [40] CROSS-LINKING TECHNIQUES
    BAUMERT, HG
    FASOLD, H
    METHODS IN ENZYMOLOGY, 1989, 172 : 584 - 609