Dynamic DNA helicase-DNA polymerase interactions assure processive replication fork movement

被引:88
|
作者
Hamdan, Samir M. [1 ]
Johnson, Donald E. [1 ]
Tanner, Nathan A. [1 ]
Lee, Jong-Bong [1 ]
Qimron, Udi [1 ]
Tabor, Stanley [1 ]
van Oijen, Antoine M. [1 ]
Richardson, Charles C. [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
D O I
10.1016/j.molcel.2007.06.020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A single copy of bacteriophage T7 DNA polymerase and DNA helicase advance the replication fork with a processivity greater than 17,000 nucleoticles. Nonetheless, the polymerase transiently dissociates from the DNA without leaving the replisome. Ensemble and single-molecule techniques demonstrate that this dynamic processivity is made possible by two modes of DNA polymerase-helicase interaction. During DNA synthesis the polymerase and the helicase interact at a high-affinity site. In this polymerizing mode, the polymerase dissociates from the DNA approximately every 5000 bases. The polymerase, however, remains bound to the helicase via an electrostatic binding mode that involves the acidic C-terminal tail of the helicase and a basic region in the polymerase to which the processivity factor also binds. The polymerase transfers via the electrostatic interaction around the hexameric helicase in search of the primer-template.
引用
收藏
页码:539 / 549
页数:11
相关论文
共 50 条
  • [21] THE BACTERIOPHAGE-T4 DNA-REPLICATION FORK - ONLY DNA HELICASE IS REQUIRED FOR LEADING STRAND DNA-SYNTHESIS BY THE DNA-POLYMERASE HOLOENZYME
    CHA, TA
    ALBERTS, BM
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1989, 264 (21) : 12220 - 12225
  • [22] Processivity of the gene 41 DNA helicase at the bacteriophage T4 DNA replication fork
    Schrock, RD
    Alberts, B
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (28) : 16678 - 16682
  • [23] The RecQ helicase WRN is required for normal replication fork progression after DNA damage or replication fork arrest
    Sidorova, Julia M.
    Li, Nianzhen
    Folch, Albert
    Monnat, Raymond J., Jr.
    CELL CYCLE, 2008, 7 (06) : 796 - 807
  • [24] Dna Unwinding Dynamics of a Processive DNA Polymerase
    Ibarra, Borja
    Morin, Jose
    Cao, Francisco
    Salas, Margarita
    Valpuesta, Jose M.
    Carrascosa, Jose L.
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 239 - 239
  • [25] Helicase-DNA interaction studied by atomic force microscopy
    Nettikadan, S
    Ahnert, P
    Patel, SS
    Takeyasu, K
    BIOPHYSICAL JOURNAL, 1998, 74 (02) : A186 - A186
  • [26] UBR5 interacts with the replication fork and protects DNA replication from DNA polymerase η toxicity
    Cipolla, Lina
    Bertoletti, Federica
    Maffia, Antonio
    Liang, Chih-Chao
    Lehmann, Alan R.
    Cohn, Martin A.
    Sabbioneda, Simone
    NUCLEIC ACIDS RESEARCH, 2019, 47 (21) : 11268 - 11283
  • [27] Evidence suggesting that Pif1 helicase functions in DNA replication with the DNA2 helicase/nuclease and DNA polymerase δ
    Budd, ME
    Reis, CC
    Smith, S
    Myung, K
    Campbell, JL
    MOLECULAR AND CELLULAR BIOLOGY, 2006, 26 (07) : 2490 - 2500
  • [28] Breathing fluctuations in position-specific DNA base pairs are involved in regulating helicase movement into the replication fork
    Jose, Davis
    Weitzel, Steven E.
    von Hippel, Peter H.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (36) : 14428 - 14433
  • [29] DNA damage responses and their many interactions with the replication fork
    Andreassen, PR
    Ho, GPH
    D'Andrea, AD
    CARCINOGENESIS, 2006, 27 (05) : 883 - 892
  • [30] Processive Replication of Single DNA Molecules in a Nanopore Catalyzed by phi29 DNA Polymerase
    Lieberman, Kate R.
    Cherf, Gerald M.
    Doody, Michael J.
    Olasagasti, Felix
    Kolodji, Yvette
    Akeson, Mark
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (50) : 17961 - 17972