A Time-Series Approach to Estimating Soil Moisture From Vegetated Surfaces Using L-Band Radar Backscatter

被引:55
|
作者
Ouellette, Jeffrey D. [1 ]
Johnson, Joel T. [2 ]
Balenzano, Anna [3 ]
Mattia, Francesco [3 ]
Satalino, Giuseppe [3 ]
Kim, Seung-Bum [4 ]
Dunbar, R. Scott [4 ]
Colliander, Andreas [4 ]
Cosh, Michael H. [5 ]
Caldwell, Todd G. [6 ]
Walker, Jeffrey P. [7 ]
Berg, Aaron A. [8 ]
机构
[1] Naval Res Lab, Elect Engn, Washington, DC 20375 USA
[2] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[3] CNR, Ist Sistemi Intelligenti Automaz, I-072006 Bari, Italy
[4] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[5] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
[6] Univ Texas Austin, Bur Econ Geol, Jackson Sch Geosci, Austin, TX 78713 USA
[7] Monash Univ, Dept Civil Engn, Clayton, Vic 3800, Australia
[8] Univ Guelph, Dept Geog, Guelph, ON N1G 2W1, Canada
来源
基金
美国国家航空航天局; 澳大利亚研究理事会;
关键词
Parameter estimation; radar; remote sensing; soil; RETRIEVAL;
D O I
10.1109/TGRS.2017.2663768
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Many previous studies have shown the sensitivity of radar backscatter to surface soil moisture content, particularly at L-band. Moreover, the estimation of soil moisture from radar for bare soil surfaces is well-documented, but estimation underneath a vegetation canopy remains unsolved. Vegetation significantly increases the complexity of modeling the electromagnetic scattering in the observed scene, and can even obstruct the contributions from the underlying soil surface. Existing approaches to estimating soil moisture under vegetation using radar typically rely on a forward model to describe the backscattered signal and often require that the vegetation characteristics of the observed scene be provided by an ancillary data source. However, such information may not be reliable or available during the radar overpass of the observed scene (e.g., due to cloud coverage if derived from an optical sensor). Thus, the approach described herein is an extension of a change-detection method for soil moisture estimation, which does not require ancillary vegetation information, nor does it make use of a complicated forward scattering model. Novel modifications to the original algorithm include extension to multiple polarizations and a new technique for bounding the radar-derived soil moisture product using radiometer-based soil moisture estimates. Soil moisture estimates are generated using data from the Soil Moisture Active/Passive (SMAP) satellite-borne radar and radiometer data, and are compared with up-scaled data from a selection of in situ networks used in SMAP validation activities. These results show that the new algorithm can consistently achieve rms errors less than 0.07 m(3)/m(3) over a variety land cover types.
引用
收藏
页码:3186 / 3193
页数:8
相关论文
共 50 条
  • [31] Time-series approach to estimate the soil moisture of a subsidence area by using dual polarimetric radar data
    Ma W.
    Chen D.
    Yang N.
    Ma C.
    [J]. Yaogan Xuebao/Journal of Remote Sensing, 2018, 22 (03): : 521 - 534
  • [32] Estimation of soil moisture with l-band multi-polarization radar
    Shi, JC
    [J]. MICROWAVE REMOTE SENSING OF THE ATMOSPHERE AND ENVIRONMENT IV, 2004, 5654 : 186 - 194
  • [33] Mapping vegetated wetlands of Alaska using L-band radar satellite imagery
    Whitcomb, Jane
    Moghaddam, Mahta
    McDonald, Kyle
    Kellndorfer, Josef
    Podest, Erika
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2009, 35 (01) : 54 - 72
  • [34] Detection of Inland Open Water Surfaces Using Dual Polarization L-Band Radar for the Soil Moisture Active Passive Mission
    Kim, Seung-Bum
    Ouellette, Jeffrey D.
    van Zyl, Jakob J.
    Johnson, Joel T.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (06): : 3388 - 3399
  • [35] Estimating Live Fuel Moisture Using SMAP L-Band Radiometer Soil Moisture for Southern California, USA
    Jia, Shenyue
    Kim, Seung Hee
    Nghiem, Son V.
    Kafatos, Menas
    [J]. REMOTE SENSING, 2019, 11 (13)
  • [36] ESTIMATING SOIL HYDRAULIC PROPERTIES USING L-BAND RADIOMETER AND GROUND-PENETRATING RADAR
    Jonard, F.
    Weihermueller, L.
    Schwank, M.
    Jadoon, K. Z.
    Vereecken, H.
    Lambot, S.
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 706 - 709
  • [37] Soil moisture profile estimation under bare and vegetated soils using combined L-band and P-band radiometer observations: An incoherent modeling approach
    Brakhasi, Foad
    Walker, Jeffrey P.
    Judge, Jasmeet
    Liu, Pang-Wei
    Shen, Xiaoji
    Ye, Nan
    Wu, Xiaoling
    Yeo, In-Young
    Kim, Edward
    Kerr, Yann
    Jackson, Thomas
    [J]. REMOTE SENSING OF ENVIRONMENT, 2024, 307
  • [38] Time-Series Retrieval of Soil Moisture Using CYGNSS
    M-Khaldi, Mohammad M.
    Johnson, Joel T.
    O'Brien, Andrew J.
    Balenzano, Anna
    Mattia, Francesco
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 4322 - 4331
  • [39] OIL STORAGE ESTIMATION WITH TIME-SERIES L-BAND SAR IMAGERY
    Anahara, Takuma
    Shimada, Masanobu
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 842 - 845
  • [40] THE EFFECTS OF SOIL-MOISTURE, SURFACE-ROUGHNESS, AND VEGETATION ON L-BAND EMISSION AND BACKSCATTER
    WANG, JR
    ENGMAN, ET
    MO, T
    SCHMUGGE, TJ
    SHIUE, JC
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1987, 25 (06): : 825 - 833