A Time-Series Approach to Estimating Soil Moisture From Vegetated Surfaces Using L-Band Radar Backscatter

被引:55
|
作者
Ouellette, Jeffrey D. [1 ]
Johnson, Joel T. [2 ]
Balenzano, Anna [3 ]
Mattia, Francesco [3 ]
Satalino, Giuseppe [3 ]
Kim, Seung-Bum [4 ]
Dunbar, R. Scott [4 ]
Colliander, Andreas [4 ]
Cosh, Michael H. [5 ]
Caldwell, Todd G. [6 ]
Walker, Jeffrey P. [7 ]
Berg, Aaron A. [8 ]
机构
[1] Naval Res Lab, Elect Engn, Washington, DC 20375 USA
[2] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[3] CNR, Ist Sistemi Intelligenti Automaz, I-072006 Bari, Italy
[4] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[5] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
[6] Univ Texas Austin, Bur Econ Geol, Jackson Sch Geosci, Austin, TX 78713 USA
[7] Monash Univ, Dept Civil Engn, Clayton, Vic 3800, Australia
[8] Univ Guelph, Dept Geog, Guelph, ON N1G 2W1, Canada
来源
基金
澳大利亚研究理事会; 美国国家航空航天局;
关键词
Parameter estimation; radar; remote sensing; soil; RETRIEVAL;
D O I
10.1109/TGRS.2017.2663768
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Many previous studies have shown the sensitivity of radar backscatter to surface soil moisture content, particularly at L-band. Moreover, the estimation of soil moisture from radar for bare soil surfaces is well-documented, but estimation underneath a vegetation canopy remains unsolved. Vegetation significantly increases the complexity of modeling the electromagnetic scattering in the observed scene, and can even obstruct the contributions from the underlying soil surface. Existing approaches to estimating soil moisture under vegetation using radar typically rely on a forward model to describe the backscattered signal and often require that the vegetation characteristics of the observed scene be provided by an ancillary data source. However, such information may not be reliable or available during the radar overpass of the observed scene (e.g., due to cloud coverage if derived from an optical sensor). Thus, the approach described herein is an extension of a change-detection method for soil moisture estimation, which does not require ancillary vegetation information, nor does it make use of a complicated forward scattering model. Novel modifications to the original algorithm include extension to multiple polarizations and a new technique for bounding the radar-derived soil moisture product using radiometer-based soil moisture estimates. Soil moisture estimates are generated using data from the Soil Moisture Active/Passive (SMAP) satellite-borne radar and radiometer data, and are compared with up-scaled data from a selection of in situ networks used in SMAP validation activities. These results show that the new algorithm can consistently achieve rms errors less than 0.07 m(3)/m(3) over a variety land cover types.
引用
收藏
页码:3186 / 3193
页数:8
相关论文
共 50 条
  • [1] PROGRESS IN TIME-SERIES SOIL MOISTURE RETRIEVAL USING L- AND S-BAND RADAR BACKSCATTER
    Horton, Dustin
    Bringer, Alexandra
    Johnson, Joel T.
    Park, Jeonghwan
    Bindlish, Rajat
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5784 - 5787
  • [2] A Study of Soil Moisture Estimation from Multi-Temporal L-band Radar Observations of Vegetated Surfaces
    Ouellette, Jeffrey D.
    Johnson, Joel T.
    Balenzano, Anna
    Mattia, Francesco
    Satalino, Giuseppe
    Kim, Seungbum
    Walker, Jeff P.
    Panciera, Rocco
    [J]. 10TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR (EUSAR 2014), 2014,
  • [3] GNSS-R TIME-SERIES SOIL MOISTURE RETRIEVALS FROM VEGETATED SURFACES
    Al-Khaldi, M.
    Johnson, J. T.
    O'Brien, A.
    Mattia, F.
    Balenzano, A.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2035 - 2038
  • [4] Soil moisture retrieval using L-band time-series SAR data from the SMAPVEX12 experiment
    Kim, Seung-bum
    Huang, Huan-ting
    Tsang, Leung
    Jackson, Thomas
    McNairn, Heather
    van Zyl, Jakob
    [J]. 10TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR (EUSAR 2014), 2014,
  • [5] Estimation of soil moisture for vegetated surfaces using multi-temporal L-band SAR measurements
    Shi, JC
    Sun, G
    Hsu, A
    Wang, J
    ONeill, P
    Ranson, J
    Engman, ET
    [J]. IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 1269 - 1271
  • [6] Soil Moisture Retrieval Using L-Band Radar Observations
    Narvekar, Parag S.
    Entekhabi, Dara
    Kim, Seung-Bum
    Njoku, Eni G.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (06): : 3492 - 3506
  • [7] A Time-Series Approach to Estimate Soil Moisture Using Polarimetric Radar Data
    Kim, Yunjin
    van Zyl, Jakob J.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (08): : 2519 - 2527
  • [8] Soil Moisture Retrieval Using Time-Series Radar Observations Over Bare Surfaces
    Kim, Seung-Bum
    Tsang, Leung
    Johnson, Joel T.
    Huang, Shaowu
    van Zyl, Jakob J.
    Njoku, Eni G.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (05): : 1853 - 1863
  • [9] Combined Active and Passive Microwave Remote Sensing of Soil Moisture for Vegetated Surfaces at L-band
    Huang, Huanting
    Liao, Tien-Hao
    Tsang, Leung
    Njoku, Eni G.
    Colliander, Andreas
    Jackson, Thomas
    Burgin, Mariko
    Yueh, Simon
    [J]. 2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 2528 - 2529
  • [10] COMBINED ACTIVE AND PASSIVE MICROWAVE REMOTE SENSING OF SOIL MOISTURE FOR VEGETATED SURFACES AT L-BAND
    Huang, Huanting
    Liao, Tien-Hao
    Tsang, Leung
    Njoku, Eni G.
    Colliander, Andreas
    Jackson, Thomas
    Yueh, Simon
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1626 - 1629