Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite

被引:104
|
作者
Yumimoto, K. [1 ]
Nagao, T. M. [2 ]
Kikuchi, M. [2 ]
Sekiyama, T. T. [1 ]
Murakami, H. [2 ]
Tanaka, T. Y. [1 ]
Ogi, A. [3 ]
Irie, H. [4 ]
Khatri, P. [4 ,5 ]
Okumura, H. [6 ]
Arai, K. [6 ]
Morino, I. [7 ]
Uchino, O. [1 ,7 ]
Maki, T. [1 ]
机构
[1] Japan Meteorol Agcy, Meteorol Res Inst, Tsukuba, Ibaraki, Japan
[2] Japan Aerosp Explorat Agcy, Earth Observat Res Ctr, Tsukuba, Ibaraki, Japan
[3] Japan Meteorol Agcy, Tokyo, Japan
[4] Chiba Univ, Ctr Environm Remote Sensing CERes, Chiba, Japan
[5] Tohoku Univ, Grad Sch Sci, Ctr Atmospher & Ocean Studies, Sendai, Miyagi, Japan
[6] Saga Univ, Grad Sch Sci & Engn, Saga, Japan
[7] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
aerosol; data assimilation; geostationary satellite; aerosol climate model; ensemble Kalman filter; TRANSPORT MODEL; KALMAN FILTER; AIR-QUALITY; EMISSIONS; SYSTEM; ASIA; SIMULATIONS; RETRIEVALS; ALGORITHM; FORECASTS;
D O I
10.1002/2016GL069298
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Himawari-8, a next-generation geostationary meteorological satellite, was launched on 7 October 2014 and became operational on 7 July 2015. The advanced imager on board Himawari-8 is equipped with 16 observational bands (including three visible and three near-infrared bands) that enable retrieval of full-disk aerosol optical properties at 10min intervals from geostationary (GEO) orbit. Here we show the first application of aerosol optical properties (AOPs) derived from Himawari-8 data to aerosol data assimilation. Validation of the assimilation experiment by comparison with independent observations demonstrated successful modeling of continental pollution that was not predicted by simulation without assimilation and reduced overestimates of dust front concentrations. These promising results suggest that AOPs derived from Himawari-8/9 and other planned GEO satellites will considerably improve forecasts of air quality, inverse modeling of emissions, and aerosol reanalysis through assimilation techniques.
引用
收藏
页码:5886 / 5894
页数:9
相关论文
共 50 条
  • [41] Smoke Detection from Himawari-8 Satellite Data over Kalimantan Island Using Multilayer Perceptrons
    Mo, Yuhao
    Yang, Xin
    Tang, Hong
    Li, Zhigang
    REMOTE SENSING, 2021, 13 (18)
  • [42] Variation of intra-daily instantaneous FAPAR estimated from the geostationary Himawari-8 AHI data
    Zhang, Yinghui
    Fang, Hongliang
    Wang, Yao
    Li, Sijia
    AGRICULTURAL AND FOREST METEOROLOGY, 2021, 307
  • [43] Data Validation and Mesoscale Assimilation of Himawari-8 Optimal Cloud Analysis Products
    Otsuka, Michiko
    Seko, Hiromu
    Hayashi, Masahiro
    Koizumi, Ko
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2021, 38 (02) : 223 - 242
  • [44] Generation and Evaluation of LAI and FPAR Products from Himawari-8 Advanced Himawari Imager (AHI) Data
    Chen, Yepei
    Sun, Kaimin
    Chen, Chi
    Bai, Ting
    Park, Taejin
    Wang, Weile
    Nemani, Ramakrishna R.
    Myneni, Ranga B.
    REMOTE SENSING, 2019, 11 (13)
  • [45] Real-time wildfire detection and tracking in Australia using geostationary satellite: Himawari-8
    Xu, Guang
    Zhong, Xu
    REMOTE SENSING LETTERS, 2017, 8 (11) : 1052 - 1061
  • [46] Aerosol Optical Depth Retrieval over East Asia Using Himawari-8/AHI Data
    Zhang, Wenhao
    Xu, Hui
    Zheng, Fengjie
    REMOTE SENSING, 2018, 10 (01):
  • [47] First Provisional Land Surface Reflectance Product from Geostationary Satellite Himawari-8 AHI
    Li, Shuang
    Wang, Weile
    Hashimoto, Hirofumi
    Xiong, Jun
    Vandal, Thomas
    Yao, Jing
    Qian, Lexiang
    Ichii, Kazuhito
    Lyapustin, Alexei
    Wang, Yujie
    Nemani, Ramakrishna
    REMOTE SENSING, 2019, 11 (24)
  • [48] A DEEP LEARNING-BASED FIRE MONITORING ALGORITHM USING HIMAWARI-8 SATELLITE DATA
    Zheng, Chunkai
    Gao, Huijuan
    Wang, Zhihui
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6126 - 6129
  • [49] Comprehensive Analysis of Typhoon Nangka Based on the Satellite Data from the GPM, CloudSat and Himawari-8
    Ma, Xiaolin
    Wang, Ju
    Huang, Hong
    Wang, Xuezhong
    Wang, Zhen
    Hu, Banghui
    ATMOSPHERE, 2023, 14 (03)
  • [50] Impact Assessment of Himawari-8 AHI Data Assimilation in NCEP GDAS/GFS with GSI
    Ma, Zaizhong
    Maddy, Eric S.
    Zhang, Banglin
    Zhu, Tong
    Boukabara, Sid Ahmed
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2017, 34 (04) : 797 - 815